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Jean Lassegue, chargeé de recherche au chRs, est
attaché au Centre de recherche en épistémologie
appliquée (crea) de I'Ecole polytechnique. Auteur

d'un ouvrage sur Turing ( Turing, Les Belles Lettres,
Paris, 2003), il tente de saisir la portée de ['infor-
matique au sein de I'environnement culturel qu'elle
contribue a créer.
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L’informatique a envahi notre vocabulaire et
nos gestes les plus quotidiens avec une force peu com-
mune : toute machine aujourd’hui est équipée d’une
«puce », d’un «capteur» ou d’'un « programme ». L’in-
formatique intervient dans les moyens de communication
et de diffusion - courrier électronigue, internet, téléphone
portable -, de paiement et de réservation — carte de cré-
dit, distributeurs, achat en ligne —, ou de classement et
de prévision — bases de données, modélisations. C’est
un instrument de pouvoir et de connaissance, aux
enjeux colossaux, tant économiques que scientifigues
et géo-stratégiques.

Au ceeur de cette révolution planétaire, personne n’hé-
siterait 2 nommer la cause: I'ordinateur. Pourtant, une
fois ce constat établi, nous sommes souvent bien en peine
d’expliquer ce sentiment d’accélération incontrélée des
pratigues numérisées. Pour démythifier I'aura quasi
magique qui entoure I'usage de I'ordinateur, plagons-
nous sur une échelle de temps plus large. A long terme,
I’informatique s’inscrit dans une longue histoire, qui est
celle de I’écriture des nombres et des langues. A plus
court terme, un homme, plus que tout autre, a contribué
a sa naissance: Alan Turing. Cet homme sut non seule-
ment lancer les bases d’un nouveau mode de connais-
sance, mais aussi lui assigner des limites. Renouer les
fils de I'histoire, comprendre le projet scientifique de
Turing, contribueront, nous I'espérons, a lutter contre
I'opacité de pratiques devenues mondiales et a apprécier
pleinement ce que I’on doit a I'informatique.

Jean Lasségue
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a vie de Turing (1912-1954) est celle d’un destin
scientifique exceptionnel, dans ce qu’il peut avoir de
prométhéen et de tragique. Prométhéen parce que
Turing a fondé une nouvelle facon de voir le monde
a partir d’un modele calculatoire et en a exploré les
limites. Par exemple, la notion de calcul, employée
pourtant depuis I"aube des temps, n"avait jamais fait,
avant lui, I’objet d"une définition rigoureuse rendant
possible la distinction entre ce qui reléve du calcu-
lable et ce qui n’en releve pas. Tragique parce que
cette quéte I'a anéanti. Son suicide a mis un terme
a une carriére scientifique fulgurante qui dura
moins de 20 ans. Ces 20 ans seront pourtant déci-
sifs pour la techno-science qui marque si profondé-
ment notre culture contemporaine : nous en sommes
les héritiers directs, nous qui vivons dans une société
du «tout-numérique » ot les ordinateurs ont acquis
une place centrale. Turing, plus que tout autre, est
le pere fondateur de cette révolution.

Nous sommes en 1912, a I"apogée de I'Empire
britannique. Comme Rudyard Kipling 40 ans plus t6t,

US National Library of Medicing

La tragedie Turing

Logicien renommeé, inventeur de I'ordinateur, déchiffreur du code de la
marine allemande pendant la Seconde Guerre mondiale, Turing a tout
pour lui... sauf d’étre homosexuel dans une Angleterre conservatrice.

Turing est, a la naissance, séparé de ses parents qui
vivent a Madras, en Inde, ou son pére est adminis-
trateur colonial. Placé en nourrice en Angleterre, élevé
a la dure dans une grammar school, il se découvre
des I'adolescence homosexuel et scientifique, deux
traits qui en font un marginal dans un milieu imbu
de culture classique et de morale victorienne. Ce n’est
qu’a Cambridge, épicentre de la vie scientifique bri-
tannique, ot il sera admis comme étudiant, puis devien-
dra enseignant et chercheur, que cette double
marginalité ne posera pas de probléeme: ailleurs, et
tout au long de sa vie, la société britannique tichera
d’y mettre bon ordre, en s’efforcant de tenir le
scientifique, utile & la nation, éloigné de I'homosexuel,
indigne des bonnes meeurs. Mais Turing ne I'entend
pas ainsi: ¢’est dans le domaine de la science qu’il
s’exprime de tout son étre. La capacité de détermi-
nation propre a la science doit permettre d’éclairer
qui il est, dans sa pensée, dans son corps, dans ses
rapports a autrui. Et pour lui qui pose les problemes
en termes scientifiques, si sa propre origine ressemble,
dans son obscurité, a un calcul crypté, seule la science
est a méme d’en déchiffrer le code et d’éclairer son
destin d’homme. Voici, a travers 21 tableaux inspi-

rés de sa vie, quelques clés pour percer les mystéres
de ce personnage torturé.

Comment poussent
les plantes?

Noél 1922, Londres. Alan Turing, dix ans, recoit en
cadeau un livre de Edwin Tenney Brewster intitulé
Natural Wonders every child should know [Merveilles
de la nature que tout enfant devrait connaitre], et le
dévore. L'ouvrage raconte comment les enfants se
développent a partir d’une cellule fécondée. suivant
les lois de la physique et de la chimie. Stupéfait, le
jeune Alan découvre un corps présenté comme une
gigantesque machine. Par conséquent, il doit étre
possible de déterminer, a I'aide de la physique. de
la chimie et des mathématiques, les lois qui régis-
sent sa construction.

1926, Sherborne Grammar School. Le directeur de
I’établissement fait un proces a I'un de ses éléves,
déja dispensé de grec et de frangais pour incompé-
tence et paresse notoires. Son nom: Alan Turing.

© POUR LA SCIENCE - Trimestriel novembre 2006 - janvier 2007
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Alors dgé de 14 ans, Turing est un garcon peu sociable,
catalogué bizarre. Accoutré comme I'as de pique, il
arrive parfois a I’école affublé d’un masque a gaz,
pour éviter le rhume des foins. Le directeur lui reproche
d’étre incapable de rédiger correctement et propre-
ment ses dissertations, et demande son redoublement.
L' adolescent a cependant la téte ailleurs: il vient de
découvrir une série infinie x — x*/3 + x/5 = x7/7T + ...
qui lui permet non seulement de calculer le nombre T,
mais, de fagon générale, toute valeur de la fonction
tangente inverse (arctan). 11 a en effet démontré
que, pour toute valeur de x, cette série infinie est égale
aarctan(x). Notamment, pour x= 1, arctan(1) = /4.

Son professeur de mathématiques est étonné de
cette performance inattendue: la procédure de cal-
cul découverte par Turing a été développée par le
grand savant allemand Gottfried Wilhelm Leibniz
(1646-1716) deux siécles plus tot! Il plaide en sa
faveur et obtient une derniére chance pour son sur-
prenant éleve,

Pour Turing, la le¢on est claire: ce qui vient de
lui arriver est plus qu'une simple péripétie dans une
vie scolaire inadaptée. Il a trouvé dans les sciences
un refuge dont personne ne le délogera. Les mathé-
matiques lui permettront de résister a cette forma-
tion de gentleman britannique qu’on lui inflige et
dans laquelle il ne se reconnait pas, cette formation
qui le détourne de ce qui I'intéresse vraiment: per-
cer le secret de la génération, que ce soit celle des
nombres, des plantes... ou méme la sienne ?

1927, Sherborne Grammar School. Alan Turing se
lie d’amitié avec un éleve d’une autre classe agé d'un
an de plus que lui. Christopher Morcom, qui voue
le méme intérét que Turing a la science et excelle
en chimie. Ils échangent leurs méthodes de calcul
en chimie, s"arrangent pour se retrouver ensemble

© Les génies de la science - Turing

au télescope, discutent longuement... Turing parle
de la croissance des plantes, s’interrogeant sur le
développement mathématiquement ordonné des
pétales sur les tiges. Morcom Iinitie & Iastronomie
et I'invite a passer 1'été dans sa famille.

Turing vénere son nouvel ami. [l admire sa force,
son aisance, son aura. lui dont on continue a repro-
cher les cahiers mal tenus, la graphie illisible, la
nullité dans les sports collectifs, la tenue débraillée.
Il apprend avec joie que Morcom a, comme lui, décidé
de présenter I’examen d’entrée & Cambridge a la fin
de son cursus scolaire. Leur plaisir est cependant
entaché d’une triste nouvelle : Christopher a contracté
la tuberculose en buvant du lait infecté. Chimie et
poison, les deux faces d’une méme médaille ?

1930, Sherborne Grammar School. Christopher Mor-
com, admis sur examen a Cambridge un an avant
Turing — celui-ci, n’ayant pas eu les notes requises,
doit rester encore un an a Sherborne —, meurt de
tuberculose bovine le 13 février, dgé de 19 ans. Turing
écrit & sa mere:

Cheére mére, j'ai écrit a Madame Morconm comme
tu me 'avais suggéré et cela m’a fait un peu de bien
[...]. Je suis siir que je retrouverai Morcom et qu'il
y aura du travail pour nous deux, comme il aurait
dii y en avoir pour nous en ce monde. Maintenant que

Alan Turing (ci-dessus a cinq ans) et son frére John
furent élevés par une nourrice en Angleterre, leurs
parents vivant a Madras, en Inde, pour des raisons
professionnelles. Ils firent tous deux leur scolarité
a la Sherborne Grammar School (ci-dessus a droite).
Page ci-contre, une pompe a eau de mer

pour lirrigation, devant I'hétel Spencer a Madras,
sur une photographie prise en 1921

par le médecin américain Wilbur Sawyer.

Jean Lassbgue
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Alan Mathison Turing
nait & Londres le
23 juin. Il est élevé par
une famille d'accueil
avec son frere John,
leurs parents résidant
a Madras (Inde), ol le
pére est fonctionnaire
colonial.

Christopher Morcom, camarade de classe
et ami d’Alan Turing qui mourut G 19 ans,
marqua profondément ce dernier.

Jje reste seul, c'est a moi de m’en char-
ger, je ne peux pas le décevoir : je dois y
mettre autant d’énergie, sinon autant d’in-
térét, que s'il était encore la. Sij’y par-
viens, je serai plus a méme de jouir de
sa compagnie qu’aujourd’hui.

S’unir a Christopher en esprit, non pas
pour attendre la résurrection de son corps,
mais pour s’ affranchir pour toujours des
corps par la puissance de la pensée,
voila I’une des clés du destin scienti-
fique de Turing. Mais qu’est-ce que la
pensée ? Et comment s’ affranchit-elle
du corps ? Comment la représenter ?
Serait-elle un code caché qui insufflerait
la vie, une sorte de contre-poison ?

Introduction
aux mathématiques

1931-1935, King’s College, Cambridge. Pendant ses
études au King's College, Turing découvre, a tra-
vers diverses lectures, le point de vue moderne en
mathématiques et en physique, celui du déterminisme
formaliste défendu par la plus grande figure mathé-
matique des années 1930, David Hilbert (voir La
mécanisation du monde, page58). Hilbert pense que,
en physique comme dans la recherche des fonde-
ments des mathématiques, le développement pour
lui-méme des symboles mathématiques permet de
faire varier leurs interprétations sans avoir 4 les rap-
porter a un fait expérimental ou intuitif préalable :

Turing se lie d'amitié
avec un camarade,
Christopher Morcom,
dont il tombe
amoureux.

Le naturaliste D'Arcy
Thompson (1860-1948) publie
son livre Forme et croissance.

1917 1926

Alan rejoint John a la Sherborne
Grammar School.

David Hilbert expose les détails

de son programme formaliste pour
le fondement des mathématiques
au Congres de Bologne.

pour effectuer un calcul algébrique, on
applique des régles de transformation
et des formules sans s’inquiéter de la
signification de chaque étape du cal-
cul. Le calcul se développe par lui-
méme, et seul le résultat final a un sens
par rapport au probléme posé.

Hilbert interpréte ainsi la mécanique
quantique en termes algébriques et topo-
logiques, ce que Turing apprend en
octobre 1932 dans le livre de John von
Neumann (1903-1957) intitulé Mathe-
matische Grundlagen der Quantenme-
chanik (Les fondements mathématiques
de la mécanique quantique), puis en
juillet 1933 dans I'ouvrage Methoden
der Mathematischen Physik (Méthodes
mathématiques de la physique) de David
Hilbert et Richard Courant.

Ce pointde vue renouvelle la facon
dont Turing interprétait la théorie
physique, lui qui, dés 17 ans, avait lu
les livres de I’astrophysicien Arthur
Eddington (1882-1944), qui se faisait le porte-parole
d’Einstein dans The Nature of the Physical World (La
nature du monde physique), et qui suivait ses cours
a Cambridge.

Dans le débat sur le fondement des mathéma-
tiques qui agite les mathématiciens du début du
XX siecle, Hilbert critique le point de vue logiciste
défendu par deux logiciens, Gottlob Frege et Ber-
trand Russell: il envisage la notion de nombre comme
une donnée primitive dont on peut étudier les repré-
sentations sous forme de signes sans chercher a réduire
le nombre & des caractéristiques ensemblistes, comme
le souhaitent Frege et Russell. Ce dernier expose sa
théorie dans Introduction to Mathematical Philoso-
phy (Introduction a la philosophie des mathéma-

Parution de l'article de Kurt Godel Sur les
propositions indécidables des Principia

Turing lit le livre

de sir Eddington Mathematica et systémes apparentés.
La structure du monde T
physique. 7 —,
A
Décés de ik

Christopher Morcom,

al'age de 19 ans. i ’

Turing entre au King's

College de Cambridge

pour suivre des études
de mathematiques.

© POUR LA SCIENCE - Trimestriel novembre 2006 - janvier 2007



Le mathématicien allemand David Hilbert (1862-1943,
en haut) et I'astronome britannique Arthur Eddington
(1882-1944, en bas). En suivant les cours de physique

d’Eddington, Turing s’ouvrit aux sciences ;

en lisant Hilbert, il découvrit les questions de la
science moderne, notamment la grande quéte d'un
fondement des mathématiques initiée par ce dernier.

TURING

tigues), que Turing lit en mars 1933. Dans la méme
direction, le jeune homme suita Cambridge, au prin-
temps 1935, les cours du mathématicien Max New-
man, qui décrit les derniers résultats obtenus par la
méthode hilbertienne dans les fondements des mathé-
matiques. Parmi eux, ceux du logicien Kurt Godel,
obtenus 1’année ot Turing est entré au King's Col-
lege, en 1931 (voir page 63).

En physique comme dans les fondements des
mathématiques, Turing se rallie au point de vue
hilbertien : en mécanique quantique, Turing sous-
crit a la facon déterministe dont von Neumann
interpréte 1'indétermination quantique (la nature
est régie par un déterminisme complet auquel nous
n’avons pas toujours acces) ; au sujet des fondements
des mathématiques, Turing adopte la notion de nombre
proposée par Hilbert. Néanmoins, ce sont les cours
d’Eddington qui lui donnent I'idée de sa «disserta-
tion » de licence, ot il démontre mathématiquement
une régularité constatée statistiquement, le théoréme
de la limite centrale (voir page49). Turing prouve
le résultat en février 1934 sans savoir qu’il a déja
été démontré en 1922,

Juillet 1935, Granichester, a quelques miles de Cam-
bridge. Depuis plusieurs mois, Turing court tous les
jours. Ce nouveau sport lui plait. Dans la course,
son corps fonctionne de facon mécanique et libére sa
pensée. Une remarque lancée par Newman a ses
éleves, a la fin d'un cours, lui revient souvent en

Turing lit Méthodes de physique Turing prouve négativement le Turing publie son article Sur les nombres
mathématigue de Hilbert et probléme de la décidabilité calculables avec une application &
Courant, et Introduction a la (Entscheidungsproblem) IEntscheidungsproblem, dans lequel il
philosophie mathématique proposé par Hilbert dans son expose sa preuve négative, obtenue a
’ de Russell. programme formaliste de I'aide de ce qui deviendra la « machine
( A Turing obtient fondement des mathématiques. de Turing ».
Turing lit Fondements sa licence Il part pour Princeton travailler
mathematiques de la mecanique de mathématiques. avec Alonzo Church et John
quantique de von Neumann. von Neumann.
1934 1935
Hitler arrive au pouvoir. Les intellectuels juifs et non juifs Turing devient Fellow Mort du roi George V. Turing obtient la bourse Proctera
d'Allemagne, en particulier des mathématiciens de I'école de King's College. Son frére George VI Princeton; Von Neumann lui propose

de Hilbert, s'exilent vers 'Angleterre ou les Etats-Unis. lui succede. de devenir son assistant.

© Les génies de la science - Turing
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Turing participant a une course du National Physical Laboratory, en 71946. Il arriva second au 3 miles.

mémoire : Messieurs, maintenant que 'on sait grace
a Gadel qu’il n’y a pas d’engendrement complet
et systématique de tous les théorémes d’'un systéeme
d’axiomes contenant l'arithmétigue, on doit se poser
la question de savoir si, quel que soil le systéme
d’axiomes, il n’y aurait pas au moins une procé-
dure passe-partout indéfiniment applicable pour
trouver quelles sont les propositions que l'on peut
effectivement déduire d’un systéme d’axiomes,
c'est-a-dire qui déciderait de leur vérité. C’est,
en substance, le probléme de la décision ou Ent-
scheidungsproblem posé par Hilbert qui est, a

["heure out je vous parle, encore ouvert. Turing réflé-
chit au probleme posé: il faut, se dit-il, préciser le
rapport entre I'existence de la procédure qui per-
met de savoir si un théoréme dérive bien d’un sys-
teme d’axiomes, et cette fameuse proposition vraie
et pourtant non déductible des axiomes, mise au
jour par Godel il y a cing ans. Si cette procédure
systématique n’existe pas, certaines propositions
ne dérivent pas des axiomes puisqu’il n’existe pas
de régle systématique pour les engendrer toutes.
Ainsi, conclut Turing, 1’absence de procédure
donne immédiatement le résultat de Godel... Reste

Turing suit le cours de Wittgenstein & Cambridge.
Il entre au service du cces a Bletchley Park
et travaille au décodage des messages radio
des sous-marins allemands.

Turing se rend secretement aux
Etats-Unis pour entrer en contact
avec le Service de cryptologie
ameéricain.

Turing se fiance, puis
rompt avec Joan Clarke,
une mathématicienne
de Bletchley Park.

Turing travaille
a sa machine électronique
de codage de la parole, Dalila.

1940 1941 1942 nov. 1942 - mars 1943

Début de la Seconde W. Churchill est
Guerre mondiale.  nommeé premier

Retour en Angleterre.
Turing suit un cours de

Turing visite les Laboratoires Bell a New
York; il rencontre C, Shannon, fondateur

cryptologie & la ministre. Turing devient  ge |a théorie de I'information; premigre
Government Code Chief Research familiarisation avec la technologie
and Cypher School Consultant électronigue en train de naitre.
(cces). pour le Gces.

Construction de l'ordinateur
allemand Z3 par Konrad Zuse.

© POUR LA SCIENCE - Trimestriel novembre 2006 - janvier 2007




a caractériser ['absence d’une procédure systéma-
tique et donc a déterminer ce qu'est une procédure
systématique. ou effective, ou mécanique, comme
la qualifient les mathématiciens de I'époque, tels que
Hilbert, von Neumann ou Gadel. Ce terme précisé,
on saura pourquoi certaines propositions échappent
toujours a la déduction.

Turing prend alors le probleme au pied de la lettre::
il part du principe que ce qu’un humain peut déduire
est équivalent 4 ce qu'une machine peut déduire.
Ainsi. il suffit de décrire convenablement une machine
idéale pour préciser ce qu’est une procédure systé-
matique. Et si ensuite on montre que cette machine
ne peut pas résoudre un probléeme bien posé, tels
que ceux qui sont a la base du déterminisme forma-
liste comme prévoir a l'avance le résultat d'un cal-
cul, alors on saura pourquoi il existe des propositions
hors systeme...

En d’autres termes, Turing renverse la fagon dont
Godel pose le probleme: il ne s’interroge pas sur
les facultés mentales supérieures censées justifier
I"existence de propositions inaccessibles, mais s’en
tient au mécanique. Son programme est simple: il
est une machine et fait les actes que peut faire la
machine. Ensuite, il pose le probleme censé étre
soluble par une machine et montre que la machine
qui résoudrait ce probleme est impossible parce qu’elle
donnerait deux résultats contradictoires.

Se servir exclusivement de machines pour mon-
trer qu'il y a comme un au-dela des machines,
songe Turing... Le mental reste parfaitement lisible,
comme une machine, sauf qu’il n’agit pas de laméme
facon. D" ol vient cette différence entre une machine
et un étre complétement descriptible comme tel ?
Voila le vrai mystére du déterminisme formaliste:
toujours descriptible mécaniquement & un instant ¢,
la pensée d"un étre humain et celle de n’importe quelle
machine ne devraient pas se distinguer. Et pourtant

Fin de la guerre en Europe.
Schradinger publie son livre
Qu'est-ce que la vie? Von
Neumann publie un premier
rapport sur les ordinateurs
programmables (Draft
Report on the Edvac)

qui s'appuie sur l'article

de Turing de 1936.

Turing se rend a une
conférence sur les
ordinateurs programmables a
Harvard. Il prend une annee
sabbatique a Cambridge,
ol il suit des cours de
physiclogie et de neurologie.

1948

Turing congoit le projet de «construire

un cerveau ». |l entre au National Physical
Laboratory pour construire

un prototype d'ordinateur, I' Automatic
Computing Engine (ace), et rédige

un rapport sur la construction d'un
calculateur électronique (Proposed
Electronic Calculator) citant von Neurmann.

© Les génies de la science - Turing

Intelligence dans la revue Mind

Turing travaille sur le
premier ordinateur dans
I'équipe d'informatique de
I'Universite de Manchester.

Department of Chemistry, University of Oxtorg

Un batiment de I'Université de Princeton,
aux Etats-Unis, ot Turing travailla de 1936 a 1938
aux cotés dAlonzo Church et de John von Neumann.

si, puisque I"homme sait que la machine ne peut pas
anticiper le résultat qu’il sait d avance €tre contra-
dictoire !

Mais alors, la nature ne serait pas une gigantesque
machine, conforme au déterminisme formaliste de
Hilbert 7 Descartes, Leibniz, Newton, Laplace se
seraient-ils trompés ? Et si la croissance dans le
monde physique — celte croissance interne aux &tres
vivants —est non mécanique, qu’est-ce qui I'engendre ?

Turing publie son article
Machine & calculer et

Turing se suicide le
7 juin en mangeant
une pomme
empoisonnée.

1

Turing publie un article sur les
bases chimiques de la
morphogenése. |l est condamne
pour homosexualité a la prison ou
a la castration chimique. Il choisit
cette derniére. Debut de sa cure
psychanalytique (jungienne).

Vo wn N ) ek,

MIND
A QUARTERLY REVIEW
PSYCHOLOGY AND FHILOSOPHY
- comrETIN macKmERY ARE
TR ANCE

-

Turing est élu Fellow
de la Royal Society.

Crick et Watson découvrent la
structure de I'apn. Elizabeth 11
succede a George VI.




La machine de Turing

Mai 1936 - juillet 1938, Université de Princeton. En
mai 1936, I"article de Turing sur le probleme de la
décision, On Computable Numbers, with an Appli-
cation to the Enstcheidungsproblem (Sur les nombres
calculables, avee une application au probléme de
la décision), est prét pour la publication. Sa mére
I"aide a rédiger en frangais un descriptif de son article
pour les Compte-Rendus de I' Académie des sciences
a Paris. L’ Académie ne réagit pas.

Par un concours de circonstances malheureux
pour Turing, une autre preuve portant sur le méme
probleme, mais obtenue par des moyens différents,
est publiée en 1936 par le logicien américain Alonzo
Church dans le Journal of Symbolic Logic, juste avant
I"article de Turing : cela n’empéche cependant ni la
publication de son article en janvier 1937 dans les
Proceedings of the London Mathematical Society
ni son départ pour les Etats-Unis ot il fait, précisé-
ment sous la conduite d’Alonzo Church, un docto-
rat de logique mathématique a I’Université de
Princeton.

Turing part de Southampton le 23 septembre 1936
et revient définitivement &4 Cambridge le 18 juillet
1938, apres avoir soutenu sa these de doctorat en mai
sous la direction de Church. C’est d’ailleurs ce der-
nier qui, dans le compte-rendu qu’il rédige de I'ar-
ticle de Turing pour le Journal of Symbolic Logic,
emploie, pour la premiére fois, ['expression de
«machine de Turing », promise a un grand avenir.

Octobre 1938, Cambridge. En 1937, Walt Disney a
sorti au cinéma Blanche-Neige et les sept nains. Turing
s’émerveille de la technique déployée par les studios
Disney : 24 dessins par seconde, voila le principe de

Blanche-Neige s'apprétant a croquer la pomme
empoisonnée. Lors de sa sortie en 1938,

le dessin animé de Walt Disney produisit

une forte impression sur Turing.

la vie ! Finalement, songe Turing, Disney, comme lui,
a compris qu’il suffit d*avoir la bonne machine pour
reproduire la vie.

La chanson de la belle-mere de Blanche-Neige
préparant sa potion empoisonnée persiste dans la téte
du jeune homme : « Plonge la pomme dans le bouillon,
que la mort qui endort 8"y infiltre. » Le personnage
de Blanche-Neige lui semble familier. D'un c6té,
I"horrible belle-mére et sa pomme empoisonnée, de
I"autre, la fréle jeune fille, mais, coup de théitre, la
pomme se coince, le poison ne péneétre pas tout le
corps. Il y a moyen de résister au poison...

1939, Cambridge. Pendant le trimestre de Paques
1939, deux cours s’ intitulent « Fondements des mathé-
matiques » a Cambridge: le cours de Turing, dédié
alalogique mathématique, et celui du logicien et phi-
losophe Ludwig Wittgenstein, sur la philosophie du
langage ordinaire... et la dissolution de la logique
mathématique comme discipline fondatrice ! Turing
assiste au cours de Wittgenstein. Certains dialogues
entre les deux hommes montrent combien leurs points
de vue sur la notion de «fondement des mathéma-
tiques » different. Par exemple, ils ne s ’accordent pas
sur la signification d’une conrradiction dans un sys-
teme mathématique : pour Turing, une contradic-
tion manifeste le manque de fiabilité des principes
du systeme formel, car elle remet en question les opé-
rations arithmétiques de base. En revanche, pour Witt-
genstein, relever une telle contradiction reviendrait
seulement a sortir de 'usage habituel que 1'on
attribue a 'opération arithmétique employée. Pour
Turing, la contradiction est le signe d’'un manque
d’objectivité ; pour Wittgenstein, elle est le signe que
I"on ne s’est pas entendu sur I'usage de laregle. Voici
un de leurs échanges:

Turing : «Si quelqu’un prend le symbolisme de
Frege et qu'on lui fournit la technique permettant
d’exécuter une multiplication au moyen de celui-ci.
alors en utilisant le paradoxe de Russell, il pourrait
aboutir a une multiplication dont le résultat est faux. »

Wittgenstein : «Cela reviendrait a faire quelque
chose que I'on n’appelle pas une multiplication. Vous
lui donnez une régle pour la multiplication et,
arrivé a un certain point, il peut aller dans deux direc-
tions différentes, dont I'une le conduit a faire com-
plétement fausse route, »

Turing abandonne assez vite le cours de Witt-
genstein, car I'idée que les mathématiques ne soient
qu’un accord sur des regles d’usage sans aucun lien
avec leur applicabilité a la physique — Wittgenstein
n’envisage pas d’application des mathématiques —
ne lui convient guére.

Le casse-téte Enigma

1940, Bletchley Park, Centre secret du Service bri-
tannigue du chiffre. «11n’y a plus que nous » dit Chur-
chill lors d’une visite au centre secret, au tout début
du Blitz. Et pour le décryptage des codes de la marine
allemande, plus que moi, pense Turing. Le jeune
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homme a été recruté par le service britannique du
chiffre pour décoder les messages cryptés des diffé-
rents services de 1"Etat allemand. La machine 2 cryp-
ter allemande, Enigma. résiste encore a tous les efforts,
méme si les Polonais ont remporté quelques succeés
(voir De lamachine de Turing a I'ordinateur, page 82).
Denniston, aux commandes de Bletchley Park, ne
lui a pas caché les enjeux: Turing, les Polonais ont
commencé a mécaniser le renseignement pour recons-
tituer le codage envoyé aux sous-marins allemands
qui font le blocus, mais ¢a n’est plus suffisant
depuis que la Kriegsmarine a compliqué sa méthode
de cryptage : on ne peut pas continuer a capter la
radio allemande pendant des heures sans rien y com-
prendre, quand on sait que ce sont des ordres don-
nés a leurs sous-marins pour couler nos bateaux!
Maintenant qu'on a réussi a capturer une de leurs
machines a crypter, I'Enigma, il faut déchiffrer
leurs messages, sinon bientot, en Angleterre, on ne
mangera plus que de la soupe de pissenlits... Il doit
¥ avoir un moyen.

Turing réfléchit. Un moyen... Le charabia du
signal comporte stirement un ordre, puisque le texte
est codé. Or les ordres sont répétitifs. On peut sup-
poser qu’ils ont été rédigés en allemand, donnés a
un sous-chef par un gradé en chef, et signés par le
chef. Des positions en longitude et latitude dans " At-
lantique Nord, I'expression Heil Hitler! et d”autres
formules de protocole doivent aussi apparaitre
régulierement, le tout encodé lettre par lettre.

Les Allemands ont compris qu'il €tait impru-
dent de répéter au début du message la clé du code
de la journée. Néanmoins, ils continuent a coder
mutuellement deux lettres : si Desteryptéen P, P doit
étre crypté en D. Pour le logicien qu’est Turing, ¢’est
tout simplement ridicule : la réciprocité laisse comme

Le logicien et philosophe britannique d’origine
autrichienne Ludwig Wittgenstein (1889-1951)
donnait des cours @ Cambridge en méme temps
que Turing. Ce dernier n'y assista pas longtemps,
n’appréciant pas le point de vue du philosophe
sur les mathématiques.

une trace, une signature, qu’il s’empresse d’exploi-
ter. Il délegue i une machine le soin d’éliminer toutes
les possibilités de combinaisons de lettres ou la
réciprocité de I'encodage de deux lettres n’est pas
assurée dans le message. Couplée a deux autres
procédures de son invention, cette méthode permet
a Turing de déchiffrer les messages allemands (voir
page 89). La difficulté consiste maintenant a déjouer
les plans des Allemands sans qu’ils se doutent que
leur code a été décrypté. lls risqueraient de changer
les méthodes de cryptage.

Le manoir de Bletchley Park, oi siége le Service britannique du chiffre. Turing y travailla deux ans a déchiffrer
le mystérieux code de la machine a crypter allemande Enigma.

Jack Harper
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Churchill et Roosevelt en conversation devant la Maison-Blanche. Quelques années plus tét, une telle
rencontre n’étant pas envisageable, Turing conceva une machine a crypter la voix humaine pour permettre
aux deux grands hommes de converser en toute sécurité.

A Bletchley Park, Turing se lie d’amitié avec une
jeune femme, Joan Clarke. Celle-ci a tout pour lui plaire:
bonne en mathématiques, elle aime discuter avec lui
et accepte ses tendances. L'épousera-t-il 7

7 novembre 1942 - 31 mars 1943, Etats-Unis. Turing
est envoyé en secret aux Etats-Unis par le Service
britannique du chiffre: le blocus de I’ Angleterre prend
des proportions jamais atteintes et il faut y remédier
au plus vite, La situation se rétablit pendant son séjour
outre-atlantique grace a un certain nombre de
défaillances logiques dues a
des « améliorations » du sys-
teme de codage allemand.
Le déchiffrement s’effectuera
de fagon réguliére a partir de
1943. Turing a pour mission
d’intervenir au mieux dans
la crise des sous-marins alle-
mands en partageant son
expertise avec les équipes américaines chargées du
décryptage des codes japonais. Il doit aussi partici-
per a I'élaboration d’un projet de codage de la voix
humaine qui permettra une communication télé-
phonique cryptée entre Churchill et Roosevelt.

Il travaille aux Laboratoires Bell de New York
ol la technologie électronique commence a étre mai-
trisée ; a partir de janvier 1943, il y rencontre régu-
lierement Claude Shannon, le fondateur de la théorie
de I'information. Turing déclare a Shannon qu’il lui
semble possible de construire des « machines qui pen-
sent». Shannon, de son c6té, fait part a Turing de

« Nous devrions pouvoir
construire aes machines
qui pensent. »

son idée d’imiter, avec des machines électroniques,
le cerveau humain dans toutes ses fonctions, y com-
pris esthétiques. Turing a sans doute aussi été consul-
tant sur le projet de construction de la bombe atomique.
Il rentre en Angleterre en mars 1943, seul civil au
milieu d’hommes de troupe, a bord d’un bateau se
déroutant sans cesse au rythme des ordres de route
recus de Bletchley Park...

1944, Hanslope Park, laboratoire dépendant des ser-
vices secrets. A 'aide de composants électroniques,
Alan Turing construit une
machine a crypter la voix
humaine qu'il nomme Dalila,
comme cette femme de I' An-
cien Testament qui sut « men-
tir aux hommes ». Avec cette
machine, il crypte le discours
de la victoire de Churchill :
il découpe la voix en échan-
tillons de fréquences, neutralise toute différence de
fréquence, puis retraduit le nouveau signal en une
autre fréquence aléatoire. Adieu la voix humaine:
cen’est plus qu’un jeu de fréquences physiques contro-
lées électroniquement.

Les progres de I’électronique donnent a Turing
une autre idée : puisque la technologie électronique
permet de maitriser la vitesse et la mémoire, pour-
quoi ne pas construire un cerveau inspiré de la
«machine de Turing » ? Ce cerveau, adulte d’emblée,
court-circuiterait le probléeme de la croissance
interne...
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Naissance de l'ordinateur

1945-1947, National Physical Laboratory. Les énormes
calculs que I'industrie de guerre exige, que ce soit en
balistique, dans la gestion des stocks ou dans le Man-
hattan Project visant la construction de la bombe ato-
mique, ont favorisé le lancement de deux projets de
construction de calculateurs €lectroniques, I'un aux
Etats-Unis, I'autre en Angleterre. Deux figures capi-
tales de la recherche mathématique se retrouvent
ainsi associées autour du probleme du calcul méca-
nisé : John von Neumann c6té américain et Alan Turing
coté anglais. Le 30 juin 1945, un premier rapport
signé von Neumann voit le jour, le Draft Report on
the EDVAC (Rapport préliminaire sur l'Electronic Dis-
crete Variable Automatic Computer), dans lequel le
pland’un calculateur électronique est décrit d’un point
de vue théorique, sur la base de I'article de Turing de
1936, On Computable Numbers. Coté anglais, Turing
est engagé le 1°" octobre 1945 par le National Physi-
cal Laboratory, situé a Teddington : il rédige lui aussi
un rapport, intitulé Proposed Electronic Calculator
(Proposition de calculateur électronique), en citant
celui de von Neumann. En janvier 1947, une confé-

rence est organisée 2 Harvard aux Etats-Unis. Turing,
seul chercheur anglais parmi les participants, y retrouve
von Neumann. Leurs deux projets, bien que trés proches,
ne sont pas équivalents : celui de von Neumann, orienté
vers le calcul, associe plusieurs types de machines a
calculer dédiées a des tiches particuliéres, tandis que
Turing remplace les machines particulieres par de la
programmation, exécutable sur une machine unique,
un ordinateur.

1947, National Physical Laboratory. Turing a la téte
ailleurs. Il a présenté son projet d’ordinateur en 1946,
et celui-ci se construit lentement. Le laboratoire a besoin
non plus d’un concepteur, mais de programmeurs et
d’ingénieurs. Turing réfléchit donc a une question qui
I"intrigue depuis longtemps : il veut comprendre ce
que I'on entend par «processus intelligent ». Pour-
quoi ne pas essayer d’appréhender expérimentalement

Les premiéres pages des deux rapports sur la
construction d’un calculateur électronique qui
marquérent la naissance de I'ordinateur: le Proposed
Electronic Calculator de Turing (a gauche), et e Draft
Report on the epvac de Von Neumann (a droite).

Proposal for Development in the Mathematics Division of an

TURING

Automatic Computing Engine (ACE) First
A. M. Turing Dxaﬂ
ofa
Proposed Electronic Calculator Report on the
Part I.  Descriptive Account E
I. Introductory 2. Composition of the Calculator 3. Storages John von N
4. Arithmetical Considerations 5. Fund tal Circuit  Elemenis

6. Outline of Logical Control
Machine 9. Checking

1. Introductory

7. External Organs 8. Scope of the
10. Time-Table, Cost, Nature of Work, Etc.

1.0 Definitions

Calculating machinery in the past has been designed to carry out accurately
and moderately quickly small parts of calculations which frequently recur.
The four pre addition, subtraction Itipli and division, to-
gether perhaps with sorting and interpolation, cover all that could be done
until quite recently, if we except machines of the nature of the differential

lyser and wind t Is, etc. which operate by measurement rather than
by calculation.

It isi ded that the el ic calculator now proposed should be
different in that it will tackle whole problems. Instead of repeatedly using
human labour for taking material out of the machine and putting it back at
the appropriate moment all this will be looked after by the machine itself.
This arrangement has very many advantages.

(1) Thespeed of the machine is no longer limited by the speed of the human
operator.

(2) The human element of fallibility is eliminated, although it may to an
extent be replaced by mechanical fallibility.

(3) Very much more complicated processes can be carried out than could
easily be dealt with by human labour.

Once the human brake is removed the increase in speed is enormous. For
example, it is intended that multiplication of two ten figure numbers shall be
carried out in 500 us. This is probably about 20,000 times faster than the
normal speed with calculating machines.

It is evident that if the machine is to do all that is done by the normal
human operator it must be provided with the analogues of three things, viz.
firstly, the computing paper on which the computer writes down his results
and his rough workings; secondly, the instructions as o what processes are
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1.1 The considerations which follow deal with the structure of a very high
speed tic digital computing system, and in particular with its logical
control. Before going into specific details, some general explanatory remarks
regarding these concepts may be appropriate.

1.2 An automatic computing system is a (usually highly composite) de-
vice, which can carry out instructions to perform calculations of a consid-
erable order of complexity—e.g. to solve a non-lincar partial differential
equation in 2 or 3 independent variables numerically,

The instructions which govern this operation must be given to the device in
absolutely exhaustive detail. They include all numerical information which is
required to solve the problem under consideration: Initial and boundary val-
ues of the dependent variables, values of fixed parameters (constants), tables
of fixed functions which occur in the statement of the problem. These in-
structions must be given in some form which the device can sense: Punched
into a series of punchcards or on teletype tape, magnetically impressed on
steel tape or wire, photographically impressed on motion picture film, wired
into one or more, fixed or exchangeable plugboards—this list being by no
means necessarily complete. All these procedures require the use of some
code, 10 express the logical and the algebraical definition of the problem un-
der consideration, as well as the necessary numerical material (cf. above).

Once these instructions are given to the device, it must be able to carry
them out completely and without any need for further intelligent human in-
tervention. At the end of the required operations the device must record the
results again in one of the forms referred to above. The results are numerical
data; they are a specified part of the numerical material produced by the
device in the process of carrying out the instructions referred to above.




University of Manchester

L'équipe de I'Université de Manchester qui construisit
l'ordinateur Manchester Mark I. De gauche a droite :
D. Edwards, F. C. Williams et Tom Kilburn.

cette notion, par exemple en regardant si la future
machine sera capable de jouer aux échecs?

A Bletchley Park, Turing et ses collegues compa-
raient déja les positions des bateaux et des sous-marins
ades piéces de jeu d’échec ou de go: ils essayaient de
deviner, a I'aide des Bombes, les intentions de ceux
d’en face, cachés derriere leur Enigma. Les machines
n’étaient pour eux que des intermédiaires. Pourtant, a
bien y réfléchir, il s agissait plutot d’'un combat entre
machines: I'esprit de I'adversaire n*était que ce qui,
dans les signaux, cessait d’apparaitre aléatoire grice
aux machines de décryptage. Pourquoi, dans ce cas,
ne pas essayer de jouer directement contre une machine
convenablement programmée. voire faire jouer des
machines les unes contre les autres pour tester la
force des programmes ?

La question de Turing est simple : peut-on compa-
rer le cerveau a un ordinateur programmable ? Sa
solution est cependant complexe, car la nature n’est
pas une simple machine programmée a I'avance. Le
vivant ne semble-t-il pas s’auto-organiser sans code?
Turing se décide : il prend une année sabbatique a Cam-
bridge pour réfléchir au probléme.

1947-1948, Université de Cambridge. Le 30 sep-
tembre 1947, Turing retourne au King's College, ou
il reprend la position de Fellow (chargé de cours)
qu’il avait abandonnée du fait de la guerre. Il suit
des cours de physiologie. Son intérét déja ancien pour
les phénomenes de croissance dans les ordres végé-
tal et animal se développe et deviendra son champ
de recherche a partir de 1951.

1948 —1950, Université de Manchester. En octobre
1948. Turing rejoint Max Newman & I'Université de
Manchester. Ce dernier y a fondé une équipe de

recherche sur les calculateurs €lectroniques. Le pre-
mier programme au monde a fonctionné sur I’ordina-
teur de Manchester le 21 juin 1948, et non au National
Physical Laboratory, dont le projet n’entrera en ser-
vice qu’en aofit 1950. Turing commence a program-
mer, tant pour faire du calcul numérique que pour
concevoir des modeles de croissance de plantes. Les
premiers débats publics sont organisés autour de la
question de la mécanisation de I'intelligence : Turing
participe a plusieurs d’entre eux et rédige un article
pour une revue philosophique, ot il soutient la possi-
bilité de la mécanisation de I'intelligence tout en sou-
lignant la différence radicale de fonctionnement physique
entre I’ordinateur et le cerveau.

Homosexuel, donc coupable

1951, Manchester: Turing est €lu Fellow de la Roval
Society. En décembre 1951, une aventure avec un
homme, mineur au moment des faits, conduil i son
arrestation le 7 février 1952.

1952, Tribunal de Manchester. Un juge doit se pro-
noncer au sujet d’'un homme ayant plaidé coupable a
I"accusation de « pratiques indécentes réitérées en com-
pagnie d’un autre homme». Le juge est perplexe: le
prévenu — un dénommé Alan Turing — n’a rien nié.
Il abien, et de longue date, des pratiques homosexuelles
et ne cherche pas a s'en cacher. Toutefois, cet homme
a la voix mal posée n’a pourtant rien d’un marginal:
c’est un Fellow de la Royal Society, un membre de la
plus célebre société scientifique du monde, celle des
Newton, des Huygens et de bien d’autres savants. C’est
aussi, aux dires des témoins venus a la barre, un homme
qui a participé de facon remarquable a I'effort de guerre
puisqu’il a percé le code secret de la marine allemande,
un homme, enfin, qui travaille dans un laboratoire de
pointe au projet d’un «cerveau électronique » couvert
par le secret défense et qui semble avoir par ailleurs
une vie sociale des plus rangées, dévouée au travail
scientifique. D ailleurs, dans sa naiveté, I"homme croit
que la loi de 1865 punissant les pratiques homosexuelles
est sur le point de changer et que ce qui est considéré
comme un crime aujourd’hui ne le sera plus demain...

On n"anticipe pas les évolutions de la loi. Néan-
moins, on peut proposer un choix, car la science vient
au secours de I"application des peines dans cette société
si ouverte au progres technologique. Pour éviter
I'emprisonnement, puisque les témoins lui assurent
qu’il est indispensable aux recherches en cours, le juge
a alors I'idée de proposer a Turing un traitement hor-
monal d’un an, comme le recommandent les experts
psychiatres. La solution du traitement hormonal abien
sar des effets physiques collatéraux (absence d’érec-
tion, seins qui poussent, disent les experts), mais
ceux-ci ne seront que temporaires et, surtout, ne sont
pas le but visé: ¢’est a la normalisation de la libido
que la justice travaille, pour le propre bien de I'inté-
ressé et pour la paix sociale. ..

Face a ce qui lui est imposé, Turing, une fois de
plus, s’en sort par la recherche scientifique : ne
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Dans les années 1950, Turing congut
un modéle décrivant un des processus
participant a la genése des formes

du vivant, telles que les motifs du dos
d’un léopard (& gauche). A droite,

le jeu de Marienbad, cas particulier
du jeu de Nim, jeu a deux joueurs sans
information cachée. Dans le jeu de
Marienbad, chaque adversaire prend
tour a tour le nombre qu'il veut
d‘allumettes, mais dans une rangée
seulement. Celui qui prend la derniére
allumette a gagné. En 1953, les
visiteurs du festival de South
Kensington peuvent se mesurer a

une machine jouant a un tel jeu. L'ére
du jeu informatique a commencé...

O
<
o
=
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pouvant travailler en prison, il choisit le traitement.
Que ces prétendus experts lui injectent ce qu'ils veu-
lent, pense-t-il, qui sont-ils pour croire maitriser |"es-
prit en s’en prenant au corps ? La pensée, pour
fonctionner, n’a pas besoin d’un état matériel par-
ticulier du corps. Les programmes du cerveau élec-
tronique ne sont-ils pas exécutables quelle que soit
la machine matérielle ?

Et pourtant... La mathématique sera-t-elle assez
forte pour libérer sa pensée de toute forme de dépen-
dance. comme du temps de la grammar school de
Sherborne ? Les mathématiques pourront-elles le sau-
ver encore 7 Tout son travail de libération de soi — de
son corps, de son milieu, de sa vie tracée d’avance —
n’a-t-il pas été vain ? Peut-on vraiment concevoir
une pensée indépendante du corps ? Et si au contraire
la pensée d’un individu dépendait de 1" histoire parti-
culiere de ce bout de matiére qu’est son cerveau ? Et
si la trajectoire d’une vie était avant tout une histoire
singuliere ? Mais alors, I'idée d’une pensée exécu-
table sur n’importe quelle machine n’est-elle pas
une illusion ? Suffit-il vraiment de remplacer le phy-
sique par la description écrite de son fonctionne-
ment pour le circonscrire ? 11 faudrait tout reprendre,
tout retravailler depuis la naissance... mais y a-t-il
encore le temps ?

1952, Londres. La Royal Society publie dans ses annales
de biologie théorique un article sur les «bases chi-
miques de la morphogenése » signé par Alan Turing.
[1a40 ans. L'article décrit comment deux substances
idéales, dites « morphogénes », se diffusant de facon
aléatoire dans un réseau, parviennent, dans des cas par-
ticuliers mathématiquement déterminables, a des
états d’équilibre laissant apparaitre une structure ordon-
née — une forme — constituée d’ondes stationnaires.
Aucun code n’explique I"apparition de ce phénomene :
c¢’est une forme auto-organisée. L'article fournit une
explication des taches sur le pelage des animaux ou des
bandes colorées sur les coquillages. Turing a rejoint
ce vieux réve né d'un livre recu a dix ans pour Nogl,
celui de penser le vivant a I'aide des mathématiques,
de la physique et de la chimie.

© Les génies de la science - Turing

1953, au festival de Grande-Bretagne a South Ken-
sington. Sur un stand du festival, le fabricant de
I’ordinateur de Manchester a installé un prototype de
la machine jouant au jeu de Nim. La machine attire
du monde et suscite des expériences assez comiques.
Ainsi, la Société pour la Recherche Psychigue monte
un stand a c6té de la machine pour voir si cette der-
niére est influengable par télépathie. Aprés I'échec
de I’expérience, les membres de la société
— en majorité des vieilles dames, dit Turing — per-
sistent dans leur idée. Ils testent si eux-mémes ne
sont pas influencables par la machine en tentant de
deviner a distance comment, dans I"autre stand, la
partie évolue... L'expérience est aussi un échec: les
machines sont beaucoup moins coopératives que
les étre humains en matiere d’influence télépathique,
conclut Turing !

La pomme

1954, Wilmslow, prés de Manchester. Depuis quelques
mois, Turing est soumis & un traitement hormonal qui
doit neutraliser sa libido. Sous I'effet des hormones,
le voila transformé en ce qu’il imagine étre une presque-
femme. Est-il encore lui-méme, malgré les apparences ?
Tout doit rentrer dans I’ordre bient6t, mais s'il s”était
trompé ? Si la pensée et le corps entretenaient des
liens plus profonds que ceux qu’il avait imaginés ? Mais
alors, la pensée ne maitriserait pas le corps... Chris-
topher aurait-il a jamais disparu ?

Un samedi, a la foire de Blackpool ot il s’est
rendu en compagnie de son psychanalyste et de ses
enfants, Turing entre dans la tente d'une diseuse de
bonne aventure. Il ressort de la consultation tremblant
et livide. Que lui ont dit les cartes ?

Le 7 juin au matin, la femme de ménage trouve
Alan Turing, une légere écume aux lévres, raide et froid
dans son lit, une pomme & moiti¢ mangée sur sa table
de chevet. Le fruit avait macéré dans du cyanure. Contrai-
rement & lapomme de Blanche-Neige, la sienne ne s’est
pas coincée dans sa gorge, c’est lui-méme qui I'y a
enfoncée, ultime acte de maitrise envers un corps qui
n’était déja plus le sien.




lan Mathison Turing est né le 23 juin 1912 a Londres,
second fils de Julius Mathison Turing et d’Ethel Sara
Stoney. En 1896, Julius était entré dans le corps des
fonctionnaires coloniaux en Inde, alors britannique et
en 1907, en Inde, il avait rencontré sa future épouse,
issue d’une famille aisée établie la-bas depuis deux
générations. Le pere de Turing passa la majeure partie
de sa vie professionnelle dans la région de Madras ou
naquit le fils ainé du couple, John, en janvier 1908. Alan,
lui, fut concu en Inde, mais naquit & Londres, lors
d’un congé de plusieurs mois qu’avait pris son pére.
La mere de Turing resta en Angleterre avec ses deux
fils jusqu’en septembre 1913. Aussi étrange que cela
puisse paraitre aujourd’hui, elle confia alors ses deux
fils, dont Alan digé d’a peine un an, aun couple de retrai-
tés habitant St Leonards-on-Sea. un village de bord de
mer jouxtant Hastings, et repartit en Inde aupres de
son mari. Elle ne retourna en Angleterre que du prin-
temps a I'automne 1915 Alan avait trois ans. En aofit
1916, le couple Turing revint en Angleterre, mais Julius
rejoignit son poste en Inde peu de temps apres ; ils déci-

Regarder grandir

Dans les années 1920-1930, le jeune Alan Turing, éléve réfractaire

de la Sherborne School, se découvre une passion pour les sciences en étudiant

la nature qui I'entoure: la croissance des plantes, la chimie du soda. ..

derent lors de ce séjour qu’Ethel resterait en Angle-
terre aupres de leurs enfants a cause de la guerre. Elle
ne repartit en Inde qu’en 1919. En 1920, le pére de
Turing démissionna de son poste a 1’occasion d’un
conflit interne concernant son avancement, mais, pour
des raisons fiscales, il ne devait pas résider en Angle-
terre plus de six semaines par an jusqu’a sa retraite en
1926: M. et Mme Turing s'installerent & Dinard, en
Bretagne. Leurs fils venaient les voir a Noél et a Paques,
la famille ne se réunissant en Angleterre que pendant
les vacances d’été. Celles-ci se déroulaient aussi en Alle-
magne, dans les pays scandinaves et en Suisse: pour
la famille Turing, I'Europe, vue d’Inde. possédait un
«air de famille» et ses déplacements y étaient nom-
breux. Néanmoins, les fils Turing, comme ceux de nom-
breux fonctionnaires coloniaux britanniques, ne virent
leurs parents que trés occasionnellement, grandissant
tout d’abord au sein de familles d’accueil, puis d’ins-
titutions scolaires.

[l existait une tradition scientifique masculine
dans la famille d”Alan Turing : du coté paternel, son
grand-pére avait étudié les mathématiques au Trinity
College de Cambridge — le college scientifique le
plus réputé de I'Université, celui de Francis Bacon,

d’Isaac Newton et de Charles Babbage — avantde deve-
nir pasteur; du c6té maternel, George Johnstone Sto-
ney (1826-1911), un cousin de son grand-pére, membre
de la Royal Society, avait inventé le terme «électron »,
ce dont la mere de Turing était trés fiere. L'intérét de
Turing pour les matiéres scientifiques semble s’étre
éveillé trés 101, a I'occasion de questions concernant le
repérage dans I'espace (il en garda le goiit des cartes
et du repérage des étoiles). Celane I'empécha pas d”ap-
précier aussi, a I'école élémentaire, I'apprentissage du
francais, sans doute a cause de I'endroit ol ses parents
résidaient depuis 1920.

Les années d'apprentissage

A partir de 1922, Turing est envoyé en internat &
I"école primaire Hazelhurst. comme son frére John. I
s’intéresse déja a I'algebre et confie a son frére que le
professeur de mathématiques a « donné une fort mau-
vaise impression de ce qui est signifié par x». Pour le
Noél de 1922, alors qu'il a dix ans, Turing regoit un
livre de vulgarisation qui semble avoir eu une influence
considérable sur son destin scientifique, Natural Won-
ders Everv Child Should Know (Les merveilles natu-
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i md;rg regardant les marguerites grandir au lieu de jouer au hockey, sur un croquis dessiné

par une de ses connaissances dans les années 1920. Page ci-contre, la foule anglaise acclamant en 1911,
dans une rue de Willenhall, West Midlands, le couronnement du roi George V.

les marguerites

relles que tout enfant devrait connaitre) dans lequel sont
décrits d'un point de vue mécaniste plusieurs phéno-
menes physiologiques, en particulier celui de la crois-
sance de I'embryon (sans que soit mentionné le processus
de la fécondation). Ainsi, ce sont plus les mathéma-
tiques appliquées aux sciences de la nature — surtout
la chimie et la biologie — que les mathématiques
elles-mémes qui ont capté 'attention de Turing.

Son intérét pour la chimie semble avoir pris forme
en 1924, quand ses parents lui eurent acheté une boite
de chimiste tout en I"autorisant a I'utiliser dans la cave
i charbon de leur maison de Dinard. La chimie orga-
nique I"attire tout particulierement : il essaye d’extraire
de I'iode a partir d’algues récoltées sur la plage de
Dinard, puis s’intéresse peu a peu aux formules topo-
logiques des molécules organiques. En septembre 1924,
il montre a sa mere la recette de fabrication du soda.
qui permet, lui dit-il, de comprendre I'effet du sang dans
les poumons.

En 1926, M. et Mme Turing envoient le jeune
Alan, agé de 14 ans, dans une école privée du Dorset
d’assez bonne réputation, la Sherborne Public School,
et non au Marlborough College comme son frere, ce
dernier ayant averti ses parents qu'Alan, compte tenu
de son caractére, ne pourrait pas sy adapter. Sur le ferry-
boat qu’il prend a Saint Malo le 3 mai 1926 pour se
rendre 4 son école, Alan apprend qu'une gréve géné-
rale s’est déclenchée en Angleterre, qui paralyse tous
les transports publics. Laissant ses bagages a Sou-
thampton, il loue une bicyclette et fait, en deux jours
et une nuit d’hatel, les 60 miles qui le séparent de sa
nouvelle école... au grand étonnement de I"adminis-
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tration de Sherborne, peu habituée a ce genre d’initia-
tive de la part de ses éleves.

Dans sa public school, I'accent est davantage mis
sur les humanités et les valeurs propres a I'éducation
de gentleman que sur les matieres scientifiques : or
Turing semble avoir déja perdu a cette époque tout inté-
rét pour les disciplines littéraires, y compris 1"appren-
tissage du francais. Dispensé de grec pour inaptitude
chronique, incapable de pratiquer les sports d’équipe
exigés des éleves — il préfere étudier les plantes de la
pelouse utilisée pour les sports collectifs ! —, il est, en
1927, en instance de redoublement, voire d’exclusion,
faute d”un investissement suffisant dans les matieres lit-
téraires. Son aspect peu soigné, dans ses devoirs écrits
comme sur sa personne, n’arrange rien. Alan sort de
ce mauvais pas en montrant a son professeur de
mathématiques un résultat (le développement de la fonc-
tion arctangente, voir page 35) que celui-ci considere
comme « génial » vu son dge et qui I'incite a plaider la
cause de son étrange éleve auprés du directeur de
I’établissement.

L’année 1927 est aussi celle d’un nouveau départ,
tant d’un point de vue scientifique qu’affectif: au
début de I'année, Alan Turing se découvre homosexuel
en tombant amoureux d’un camarade d’une classe supé-
rieure, Christopher Morcom, qui partage avec lui un gofit
prononcé pour les matiéres scientifiques, en particulier
pour la chimie. De 1927 a 1930, la vie de Turing prend
un tour nouveau: le jeune homme, sans avouer ses sen-
timents, trouve en Christopher Morcom un interlocu-
teur complice et féru de science, méme si ce dernier est
loin de soupgonner la passion qu’il engendre.

Library and Archive Center, King's College Cambridge, AMT/C/25 image 95 © P. N, Furbank
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Un des batiments du King's College, @ Cambridge, ot Alan Turing fit ses études de mathématiques
de 1931 a 1933, et oi il obtint en 1935 un poste d’enseignant-chercheur. Ci-dessous, son professeur
de mathématiques en 1933, Max Newman (1897-1984), qui l'introduisit aux grands problémes

de la logique mathématique de I'époque, dont celui de la décision, qu'il résolut trois ans plus tard.

Contrairement a Turing, Christopher Morcom n’a
pas de difficultés particuliéres avec les matieres litté-
raires et est & I'aise dans la vie scolaire en général.
D’un tempérament joueur, il invente de nombreux jeux,
tentant en particulier de faire croire a son interlocuteur
des choses vraisemblables, mais fausses. Ainsi, lorsque
les deux amis passent I’examen d’entrée du Trinity Col-
lege — le prestigieux college ol le grand-pére pater-
nel de Turing a fait ses études de mathématiques —,
Christopher fait croire a Alan, avec qui il s’est rendu a
Cambridge, qu’ils ont changé de fuseau horaire et
qu’il doit décaler sa montre de 20 minutes. .. Turing se
rend compte de la supercherie a la grande joie de Mor-
com. Ce dernier est recu a I'examen et Turing échoue.

Morcom part pour Trinity le trimestre suivant, mais,
atteint depuis I'enfance de tuberculose bovine aprés I'in-
gestion d’un lait infecté, Christopher Morcom meurt

lors de sa premiére année a Cambridge, le 13 février 1930,
a I'dge de 19 ans, alors que personne n’avait averti
Alan Turing de sa maladie. 1l écrit a sa meére qu’il lui
faut maintenant assumer seul le destin scientifique
promis & Morcom. Peu apres, il élabore pour la mere
de son ami disparu une théorie de la migration de I'es-
prit, selon laquelle I’esprit serait capable de se déta-
cher du corps qu'il habite au moment du décés et d’en
intégrer un autre ultérieurement. Turing repasse I'exa-
men d’entrée & Cambridge un an plus tard et est recu
au King's College, ou il entre en septembre 1931, I'an-
née de la parution des travaux de Godel.

Les Tripos

A Cambridge cette année-1a, Turing fait partie des 85 étu-
diants qui commencent leur cursus mathématique de
trois ans, appelé Tripos dans le jargon de I"Université.
Tout en poursuivant avec enthousiasme ses études de
mathématiques, Turing étend ses intéréts a la phy-
sique, en particulier & la mécanique quantique, grice
aux livres de Schrodinger, Heisenberg et von Neu-
mann qu’il a regus en prix en quittant Sherborne. A
ces cours s’ajoutent ceux donnés par des scientifiques
allemands qui ont pris le chemin de I'exil a I'arrivée
au pouvoir des nazis en Allemagne, a partir de 1933:
Max Born en mécanique quantique, Richard Courant
sur les équations différentielles, puis, un peu plus tard,
John von Neumann sur les fonctions presque pério-
diques. L'avenement du nazisme a en particulier déca-
pité toute I"école mathématique et physique de Géttingen,
centrée autour de la figure de Hilbert : elle vit désormais
éparpillée, notamment en Angleterre (Schrodinger, Born
et Courant) et aux Etats-Unis (Einstein, Weyl, von Neu-
mann, Godel, Lefschetz, Noether).

Turing suit aussi en 1933 les cours de méthodo-
logie scientifique de 1'astrophysicien sir Arthur
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Somme de variables aléatoires

Eddington. dont il a lu les livres de vulgarisation scien-
tifique a Sherborne. Celui-ci insiste sur la place du cal-
cul des probabilités dans la démarche scientifique et
s’applique a en dégager la nature, surtout depuis que
I’apparition de la mécanique quantique a radicalisé
la présence de I’aléatoire dans la connaissance de la
nature physique. Cette vision des sciences suggeére a
Turing un théme de «dissertation » de fin de cursus: a
le théoréme de la limite centrale.

La mére de Turing rapporte que celui-ci lui a dit
avoir démontré le théoréme de la limite centrale 2 15 ans,
en 1927. méme si la preuve qu'il présente a la fin de
son premier cycle universitaire date de février 1934.
Turing ignore que ce théoréme a déja été démontré par
le mathématicien suédois Lindeberg dans un article

TURING

Variable aléatoire

Stephen Silver - Open Clip Art Library

Lorsqu’on lance un dé une fois, on a autant de chances d'obtenir
chaque face. En revanche, quand on lance deux dés, on a plus de
chances d'obtenir le nombre 7 que les autres. De méme, dans
certaines conditions déterminées par le théoréme de la limite
centrale, une somme de variables aléatoires, tel le résultat d’un
lancer de dé, converge vers une variable aléatoire a quand elle tend
vers l'infini. La distribution de la somme en fonction des variables

de 1922, publié en allemand dans le Mathematische
Zeitschrift. Ce théoréme justifie le caractére de « courbe
en cloche » d’une distribution de probabilité.

Lors d’une expérience aléatoire comme le lancer
d’un dé. on peut associer I'apparition d’une face du
dé a un nombre (généralement gravé sur la face du
dé). Le nombre apparait alors comme le résultat numé-
rique d’un « mécanisme » non déterministe, le lancer
physique du dé. Dans le cas général, il est possible
de construire une fonction qui fait correspondre
I"apparition d'un événement a un nombre réel (cette
fonction est appelée variable aléatoire).

Dans I'exemple du lancer de dé, on appelle par
extension «variable aléatoire» le résultat du lancer,
c’est-a-dire 1, 2, 3,4, 5 ou 6. Tous ces résultats sont
équiprobables. En revanche, si on lance plusieurs dés,
la somme des lancers n’est plus équiprobable. Par
exemple, pour deux dés, il y a | chance sur 36 que la
somme des lancers soit 2, mais 6 chances sur 36 qu’elle
soit égale a 7: une convergence se dessine donc vers
une variable aléatoire particuliére (ici le résultat 7).
Que se passe-t-il dans le cas ol la somme des variables
aléatoires tend vers 1'infini ? Le théoréme de la
limite centrale répond a cette question en donnant
les conditions de convergence vers une variable
aléatoire d’'une somme de variables aléatoires quand
cette somme tend vers I'infini.

Avec le recul, I'intérét de Turing pour ce théo-
réme nous renseigne sur le type de mathématique que
Turing affectionne déja: le théoreme permet de consi-
dérer le caractere aléatoire d’un événement physique
comme une apparence, des lors qu’il est possible de
réitérer suffisamment longtemps le nombre des évé-
nements. C’est donc la réitération qui permet, par
convergence, d’approcher de fagon déterministe la sin-
gularité d’un événement (indexé par un nombre réel)
dont Iapparition reléve de causes qui, physiquement,
ne sont pas pleinement déterminables. Le schéme de
la réitération apparait donc comme une clé détermi-
niste pour réduire I'aléatoire tel qu’il se manifeste dans
le monde physique.

En avril 1934, Turing passe ses examens de fin de
troisieme année avec « Distinction », |’appréciation la
plus haute que I’on puisse obtenir, qui n’est accordée
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aléatoires prend alors la forme d‘une cloche.

cette année-la qu’a huit candidats. Il rend sa «disser-
tation» concernant le théoreme de la limite centrale
quelques mois plus tard, en décembre 1934, Bien qu’elle
ne soit pas la premiére, la démonstration présentée
par Turing laisse espérer d’autres résultats originaux
dans I'avenir; I'assemblée des professeurs de King's
College ne s’y trompe pas, puisque cette démonstra-
tion vaut a Turing, au printemps 1935, sa position de
Fellow, c’est-a-dire d’enseignant-chercheur, pour une
durée de trois ans. Turing n’a que 22 ans.

Le début de la recherche

A la méme période, Turing passe la derniére partie
de son cursus de Tripos: il choisit de suivre le cours
de Max Newman sur le fondement de la théorie des
ensembles. Ce cours I'introduit a la logique mathé-
matique et a la problématique mise en place par Hil-
bert: formaliser les mathématiques en vue d’établir
un fondement solide, au sein duquel on pourra utili-
ser sans restriction tous les outils patiemment mis en
place par les mathématiciens, en particulier ceux qui
font appel a I'infini actuel (un infini que I'on pourrait
parcourir intégralement).

Le cours de Newman ne décrit pas seulement le
projet de Hilbert: il aborde aussi les limitations inhé-
rentes au projet en question, en particulier la pre-
miere d’entre elles, I'incomplétude de tout systeme
formel telle qu’elle a été établie par Godel en 1931 :
dans tout systéme formel, il existe au moins une
proposition vraie qui n’est pas démontrable. En
avril 1936, Alan Turing présente & un Newman médusé
le manuscrit tapé a la machine de I"article qui le
rendra célébre, On computable numbers, with an
application to the Entscheidungsproblem (Sur les
nombres calculables avec une application au pro-
bléme de la décision). Le résultat qu’il y présente
s'apprécie par rapport a celui de Godel : il en corro-
bore la généralité tout en donnant une définition géné-
rale de la notion de calcul, comme nous allons le voir
dans le chapitre suivant.




: n 1936, en publiant son article sur le probleme de la
P décision, On Computable Numbers, with an Applica-
l_ - .. tion to the Entscheidungsproblem, Turing porte un nou-
! veau coup a I'ambitieux programme lancé par le
mathématicien allemand David Hilbert: il 6te tout espoir
e de construire des fondements intégralement formalistes
o pour les mathématiques. Ce faisant, néanmoins, il ouvrira
un nouvel horizon trés prometteur: I informatique. Com-
ment ce jeune mathématicien, novice dans ce domaine
de recherche, est-il venu & boutd’un probléme qui résis-
tait aux plus grands scientifiques de I'époque ?

L’ étymologie du mot «calcul » fournit une piste:
le terme «calcul », qui vient du latin calculus, désigne
un petit caillou qui servait soit a voter lors des assem-
blées et des proces, soit a compter en dénombrant les

unités. Si le rapport entre «calcul » et «compter »
nous apparait immédiatement, celui entre «calcul » et
«vote», ¢'est-a-dire décision, est moins évident. Pour-
tant, I’expression dérivée du latin, « marquer d'une
pierre blanche », qui désigne un événement heureux,
en témoigne encore: dans un vote lors d’un proces a
Rome, le caillou blanc signifiait «acquitter» et le caillou
noir, «condamner». La dualité de sens du mot calcu-
lus se retrouve dans la notion de calcul élaborée par
Turing : ce qui permet de prendre des décisions (Ent-
scheidungen) est aussi ce qui sert au dénombrement
(Computable numbers).

Quel rapport y a-t-il entre ces deux activités ? Voila
ce qu’'il nous faut comprendre, car I'étymologie
n’explique pas la parenté entre les deux sens de

ux origines du calcul

L'article de Turing de 1936 sur le probleme de la décision repose sur la notion
de «calcul » et les différents sens que I'on peut lui donner: le dénombrement,
certes, mais aussi la décision. Quel est le lien entre ces deux interprétations ?
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Page ci-contre, un extrait de la Gramatica y
vocabulario de la lengua mexicana (Grammaire et
vocabulaire de la langue mexicaine) de Fray Andrés
de Olmos (1547), I'une des nombreuses grammaires
congues par les Européens, au lendemain des grandes
découvertes, pour consigner les régles d'usage

des nouvelles langues rencontrées.

calculus, I'un relevant des signes fastes ou néfastes
et I"autre du domaine du nombre. Pour saisir ce rap-
port a I’époque moderne, remontons, dans I"histoire
de la rationalité, au vaste mouvement qui précéda | ap-
parition des approches modernes de la notion de
calcul telles qu’elles ont été élaborées par les mathé-
maticiens de la premiére moitié du xx* siccle et, parmi
celles-ci, celle de Turing.

La mécanisation du langage

Pendant I'age dit classique, qui couvril, au sens large,
la période du xvI® au xvu© siecle, la fagcon dont on
explique les phénomenes se transforma profondément,
que ceux-ci soient d’ordre culturel (phénomeénes lin-
guistiques) ou naturel (phénomenes physiques) : furent
considérés intelligibles les phénomenes que I'on pou-
vait reproduire au moyen d’instruments mécaniques.
Laraison techniqute servait dorénavant de moteur a I'ex-
plication scientifique. Retracons les trois principales
étapes de cette révolution capitale de la pensée.

La premiere étape est la grammatisarion des langues
dumonde: dés la Renaissance se développent, a la faveur
des découvertes de nouveaux continents, des instru-
ments techniques d’intelligibilité des langues, consis-
tant & dégager leurs grammaires et a noter leurs lexiques.
Ce mouvement, qui s"accentue a I dge classique, éclaire
le premier sens étymologique du mot calculus, qui a
trait a I'intelligibilité des signes institués, ¢’est-a-dire
au premier chef a celle des langues parlées.

Contrairement a ce que I’on pourrait croire au pre-
mier abord, la grammaire d’une langue. c¢’est-a-dire
I’ensemble de ses regles de construction stabilisées a

Grammatiser, pourq

un instant donné et pour un groupe social donné, n’est
pas connue de ses locuteurs, bien que ceux-ci la res-
pectent et sachent immédiatement distinguer un usage
correct d’un autre jugé déviant. Décrire la grammaire
d’une langue est donc un acte théorigue qui consiste
s’extraire du simple flux de la parole et a envisager la
langue comme un objet extérieur a l'acte de parole et
soumis a des principes de construction.

Certes, I'élaboration de grammaires rendant pos-
sible la constitution des langues en objets théoriques
est aussi vieille que I'apparition de I'écriture dans les
civilisations qui ont développé cet outil (Mésopotamie,
Grece, Egypte, Inde, Monde arabe, Chine, Mexique),
mais, a partir de la Renaissance, I’aspect systématiqgue
de la grammatisation est le signe d’un nouveau rap-
port au langage. Des centaines, puis des milliers de
langues ont ainsi été grammatisées sur le modele de la
grammaire gréco-latine (les langues d"Europe & peu
prés en méme temps que les langues amérindiennes,

Le Dasatayipratisakhya de Saunakacarya, grammaire
en sanskrit du langage utilisé dans le Rigveda,

plus ancien recueil d’hymnes de la religion védique.
Cette religion fut imposée en Inde par les Aryens qui
envahirent la région au 1 millénaire avant notre ére.
La grammaire présentée ici fut rédigée en 1665,

en Inde. Curieusement, malgré I'impact du modéle
grammatical sanskrit sur de nombreuses cultures,
les Hindous n’ont pas grammatisé d’autres langues.

il
uol?

ourquoi l'important mou-

vement de grammatisation

s'est-il généralisé en

Europe ? Pour des raisons
contingentes a la situation linguis-
ligue européenne, avance le linguiste
Sylvain Auroux : le latin avait été
grammatisé sur le modéle du grec
dés ['Antiquité et servait essentiel-
lement d’outil de maitrise de I'écri-
ture pour des individus dont il était
la langue maternelle. Lorsque le latin
a cessé d'étre la langue maternelle
touten restant la langue intellectuelle
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et religieuse de I'Europe, la gram-
maire latine a changé de statut et est
devenue un modéle d'intelligibilité
transférable a n'importe quelle langue
parlée, européenne ou non. G'est
donc la diversité linguistique, cepen-
dant liée a un modéle unitaire d'in-
telligibilité, quia promu la grammaire
latine au rang de technique transfé-
rable a d'autres langues.

Par ailleurs, on constate, sans pou-
voir l'expliquer, que le sanskrit,
qui a beaucoup servi de modéle
grammatical, y compris a des

langues éloignées (langues tibéto-
birmanes, langues dravidiennes),
n'a pas eu le méme effet. De méme,
malgré une solide tradition gram-
maticale propre, les locuteurs de
l'arabe, qui ont sans doute croisé
le plus d‘aires linguistiques diffé-
rentes lors de 'expansion mondiale
de l'islam, n'ont cherché nia gram-
matiser les langues rencontrées
selon leur canon grammatical ni
constituer un réseau techno-lin-
guistique tel celui que dévelop-
pera I'Europe de I'age classique.

MS2162 - Oslo and Landon - wvw.nb nafbasatisch

1 mm@ :

TURING




Le grand horloger de Voltaire

« | est vrai, j'ai raillé Saint-Médard et la bulle;
Mais jai sur la nature encor quelque scrupule.
L'univers m'embarrasse, et je ne puis songer

Que cette horloge existe et n'ait point d’horloger. »

Les Cabales, Voltaire, 1772

méme si I’adaptation du format de la grammaire latine
fut, pour des raisons €videntes, plus facile dans le cas
des langues européennes). « A la fin du xvi© siecle, on
peut estimer que le patrimoine espagnol en Amérique
latine porte sur 33 langues différentes: 4 la fin du xvi®
sur 86 langues, a la fin du xvin®, sur 158 langues »,
explique le linguiste Sylvain Auroux dans La révolu-
tion technologique de la grammatisation (1994).

La grammaire devient dés lors un instrument rech-
nique permettant de décrire la langue comme un
mécanisme dont la structure est régie par des regles:
envisager toutes les langues humaines sous 1'angle de
leur grammaire, ¢’est donc faire I’hypothése consciente,
ou non, que le langage résulte d’un mécanisme de
construction dont chaque langue n’est qu’une matéria-
lisation particuliére.

Ainsi, historiquement, la technique grammaticale
gréco-latine a servi de modele a un transfert techno-
logique massif puisque les langues du monde ont été
grammaticalement outillées a partir de ce modele:
elle a aussi alimenté une croyance trés particuliére,
celle de I'identité d"un mécanisme grammatical au-
dela de la diversité des langues, projeté en amont

(dans une langue originelle) ou en aval (dans une future
langue universelle).

Cette attitude technicienne propre a la rationalité de
I"dge classique touche aussi le lexique. Le rapport au
lexique s’instrumentalise lui aussi & la méme époque
quand on commence a doter les langues de dictionnaires
unilingues. L' invention nous est si familiere aujourd’hui
que nous n’y prétons plus attention. Pourtant, un dic-
tionnaire est la constitution mécanique d’un lexique
d’une langue (y compris la langue maternelle) en tant
qu’objet théorique d’étude: il favorise I'accumulation
d’un savoir sur la langue qu’aucun individu n’a jamais
possédé sans 1'aide d’outils appropriés.

Ainsi, dorénavant, I’apprentissage et I'usage de la
langue dépendent de la médiation d’un outillage tech-
nique externe, socialement construit et diffusé par
I"imprimerie. Le rapport aux langues de chaque locu-
teur est transformé : I'idée méme de langue «natu-
relle» a évolué, s’est «culturalisée » sous I'effet de
I"outil grammatical.

Dans cette évolution majeure, la mécanisation,
tout d’abord liée a I"intelligibilité des signes insti-
tués, s’est peu a peu étendue a celle de la nature. La
transformation touche d’abord la physique et les
mathématiques.

La nature a I'image
d’une horloge

C’est dans le contexte de la mécanisation de la nature
que I’on retrouve le deuxieme sens étymologique du
mot calculus, qui a trait au dénombrement. Jusqu'alors,
mathématique et physique avaient été dominées par
un paradigme, celui de I'axiomatique de la géométrie
€élaborée par Euclide au ni° siecle avant notre ere : dans
ses Eléments, Euclide avait déduit toute la géométrie 2
partir d’'un minimum de postulats et axiomes de base.
La physique se devait de suivre bon an mal an I'exemple
de I'axiomatique de la géométrie et, en conséquence,
adopter un style déductif a partir de principes abstraits
intuitivement regus, méme si cette déduction rendait
peu compte de la diversité des phénoménes naturels et
de leurs transformations.

A partir du xvie© siecle, une nouvelle attitude se
dégage : on considére qu’un phénomene est expliqué
quand on sait le reproduire au moyen d'instruments
ou d’expériences relevant de la mécanique. L'hor-
loge devient un modele explicatif fondamental des
phénoménes naturels, qu’ils soient cosmologiques,
physiques ou biologiques. Dieu lui-méme ne se verra-
t-il pas attribuer plus tard par Voltaire le nom de
«Grand Horloger» ?

Le frontispice de la premiére édition du Dictionnaire
de I'Académie francoise (1694). A partir du xve® siécle,
avec I'engouement pour les dictionnaires bilingues
apparut celui pour les dictionnaires unilingues :
I'Académie frangaise fut fondée par le cardinal

de Richelieu en 1635 avec pour objectif essentiel

de créer un dictionnaire du francais. La mécanisation
du langage se poursuit...
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Et la géométrie?

orsque, au xvii® siécle, la

mécanique prend le pas sur

l'axiomatique de la géome-

trie euclidienne comme fon-
dement des sciences, la géométrie
n'échappe pas a cette mécanisation.
Isaac Newton, le plus grand phy-
sicien du xvif siécle, décrit ainsi
celte discipline dans ses Principes
de philosophie naturelle (1686). elle
doit étre congue comme science des
rapports entre les figures, ce qui
suppose que soient construites au
préalable un certain nombre de
figures pour que puissent s‘exercer

et, plus généralement, des rapports
de détermination réciprogue. Mais
la construction des figures reléve
d'une pratiquetechnique antérieure
a la géométrie et sur laquelle cette
derniére se fonde: «Les construc-
tions de lignes droites et de cercles
sont des problémes, mais non des
problémes de géomeétrie. La solu-
tion de ces problémes reléve de Ia
mécanique et, ceux-ci résolus, la
géomeétrie en montre l'usage |[...].
Ainsi la géométrie est-elle fondée
sur la mécanique pratique. » Cette
mécanique pratique est le terrain de

Isaac Newton (1642-1727) sur une gravure

entre elles des rapports de mesure

Des lors, faire de la physique une science véri-
table consiste a mettre au jour la nécessité des rap-
ports entre les phénomenes sous la forme du
déterminisme, ¢’est-a-dire en anticipant sur tout le
développement du processus avant méme qu’il ait
lieu. L'image la plus parlante de ce rapport de cause
a effet est celle du mécanisme, régi par des lois d’ ot
tout hasard est exclu. La notion de fonction apparait
pour répondre a ce nouveau besoin : une fonction
opere une transformation réglée d’une situation — géo-
métrique ou numérique — en une autre.

Lanotion abstraite de fonction fut élaborée dés la fin
duMoyen Age par le philosophe et savant frangais Nico-
las Oresme (1320-1382), mais son usage ne se généra-
lisa qu'avec Descartes et ['avénement de la géométrie
analytique, au XVII® siecle : une fonction opere une trans-
formation, par exemple d'un nombre en un autre nombre,
d’une figure géométrique en une autre ou d’une figure
géométrique en un nombre selon une régle dont I'ap-
plication donne un résultat unique, s’il est défini. On
congoit I'importance de cet instrument mathématique
pour I'étude des mouvements physiques: pour la pre-
miere fois, il devient possible d’établir une relation
précise entre les processus causaux en physique et le cal-
cul numeérique en mathématiques. Cette nouvelle fagon
de procéder sera promise & un grand avenir dans les
sciences de la nature, en particulier en physique.

Cette conjonction entre processus causaux et cal-
cul constitue le ceeur de la notion de déterminisme en
physique: toute détermination causale devient, en droit,
mathématiquement calculable (d’ ol la conception quan-
titative des processus physiques). Au début du x1x® siecle,
le mathématicien et physicien Pierre Simon de Laplace
(1749-1827) systématisera le cadre théorique du déter-
minisme en utilisant I'image d”un «démon omniscient »,
dit «démon de Laplace » : si cette créature connaissait
la position et la vitesse de toutes les particules de 1'Uni-
vers a un instant donné, elle serait capable d’en déduire
tous ses états futurs comme tous ses états passés. Déter-
minisme, mécanisme et calculabilité entretiennent ainsi
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la physique par excellence.

du xix® siécle.

des rapports étroits dans les sciences de la nature de
I"age classique.

La crise de la géométrie
euclidienne

L’ attitude axiomatique elle-méme, essentiellement lice
a la géométrie euclidienne, semble avoir échappé jus-
qu’alors au mouvement de mécanisation qui a touché
les sciences humaines comme les sciences de la
nature. Deux événements précipitent son renouveatu,
le premier lié a I'évolution du statut philosophique de
la géométrie et le second di a I"apparition d’une nou-
velle arithmétique de I'infini.

Depuis I'origine de la géométrie euclidienne, nombre
de savants avaient tenté de clarifier le cinquiéme pos-
tulat d’Euclide, dit «postulat des parall¢les », selon
lequel par un point hors d’une droite, il ne passe qu’une
parallele & celle-ci. Le postulat des paral-
leles n’avait cessé de poser probleme au
cours de I"histoire des mathématiques pour

Le démon de Laplace

«Nous devons envisager I'état présent
de I'Univers comme I'effet de son état anté-
rieur et comme la cause de celui qui va
suivre. Une intelligence qui, pour un ins-
tant donné, connaitrait toutes les forces
dont la nature est animée et la situation
respective des étres qui la composent, si d'ailleurs elle était assez
vaste pour soumettre ces données a I'analyse, embrasserait dans
la méme formule les mouvements des plus grands corps de
I'Univers et ceux du plus léger atome; rien ne serait incertain
pour elle, et I'avenir, comme le passé, serait présent a ses yeux. »
Essai philosophique sur les probabilités,

Pierre Simon de Laplace (1814)
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Une géométrie non euclidienne

u xixe siécle, le mathé-

maticien russe Nicolai

Lobatchevski (1793-

1856), 'un des pionniers

de la géométrie non
euclidienne, construit une géomé-
trie qui s ‘affranchit du postulat eucli-
dien des paralléles, la géométrie
hyperbolique. Dans cette géométrie,
il existe une infinité de droites pas-
sant par un méme point P et paral-
léles a une droite r qui ne contient
pas ce point. Lobatchevski définit
ainsi un angle de parallélisme o,
angle compris entre 0et 7/2 mesuré
a partir de la perpendiculaire PH ar
passant par P, tel que toute droite
faisant avec PH un angle supérieur
do. est paralléle ar, et toute droite
faisant avec PH un angle inférieur
d oL coupe la droiter. La géométrie
euclidienne correspond au cas limite
oll 'angle o. vaut /2 dans ce cas,
le secteur se résume a une droite KK’
Une fagon d'appréhender cette géo-
métrie est de considérer un morceau
de plan tel celui représenté sur le
schémaa: l'angle de parallélisme o
est I'angle limite pour lequel on
peut dessiner une droite qui, dans
ce morceau de plan, coupe la droite .
End autres termes, toutes les droites

incluses dans le secteur orange sont
des paralléles ar.

Une autre fagon est d'imaginer que
la surface sur laquelle est décrite la
géométrie de Lobatchevski est telle
que ses droites (ou géodésiques)
sont des courbes, comme celles
représentées sur le schémab. Le
mathématicien italien Beltrami mon-
trera que la pseudosphére est un
bon support pour la géométrie
hyperbolique.

La pseudosphére, construite en 1839
par Ferdinand Minding, est une sur-
face engendrée par Ia rotation d'une
courbe particuliére, la tractrice, autour
de son asymptote (voir le schéma c;
I'asymptote est ici I'axe 2). La trac-
trice est définie de la fagon sui-
vante: chaque tangente, tracée a partir
d’un pointP quelconque de la courbe,
rencontre 'axe z en un point M tel
que la distance MP est égale a une
constante déterminée. Beltrarmi mon-
tra que les géodésiques de la pseu-
dosphére sont équivalentes aux
cordes d'un cercle du plan euclidien,
dit cercle limite (voir le schéma d).
Parun point P extérieura une droiter,
on peut tracer une infinité de paral-
leles a cette droite: toutes celles qui
sont dans le secteur orange.

Deux représentalions de la géométrie de Lobaichevski (a eth). La pseudosphére et la
construction de sa Iracirice (c). Le modéle du cercle limite de Beltrami (d).

des raisons philosophiques tenant a la conception que
I’on se faisait de la vérité géométrique : jusqu’au
XIx*® siecle, la vérité de toute proposition géométrique
provenait soit de ['évidence que 1'on pouvait en avoir,
soit de la démonstration a partir d’autres propositions
considérées comme évidentes. Cette double source
de la vérité permettait d’étendre la légalité de la géo-
métrie non seulement a I’espace abstrait des mathé-
matiques, mais aussi a 1’espace percu par les sens,
I’espace de la physique : I'évidence des axiomes et pos-
tulats de la géométrie euclidienne tissait un lien de
parenté entre les formes percues dans I’espace concret
et les formes géométriques abstraites imaginées dans
I’espace abstrait. Or le postulat des paralleles — dont
la vérité n’était pas remise en question puisqu’elle fai-
sait partie des réquisits minimaux de la géométrie —ne
tombait ni dans la catégorie de I'évidence ni dans
celle de la démonstration.

Le probleme philosophique posé par sa vérité était
le suivant: dans les deux cas de vérité classiquement
admis, le projet d’une description mathématique de la
réalité spatiale était garanti par la vérité des proposi-
tions géométriques, ¢’est-a-dire par leur caractere évi-
dent ou démontrable le fait que le cinquieme postulat
résistat a la justification par I'évidence ou la démons-
tration rendait donc précaire tout le projet rationnel
d’une description mathématique de la réalité physique,
le lien entre mathématique et physique se trouvant com-
promis. Justifier la vérité du cinquieme postulat en termes
d’évidence ou de démonstration devenait ainsi une tache
préalable a tout projet philosophique de justification
de la nature physique en termes mathématiques. On
comprend mieux pourquoi les savants se pencherent sur
le probléeme avec autant d’obstination.

Ce n’est qu'au tout début du x1x© siecle qu’appa-
rait I’idée qu’il faut non pas faire entrer cofite que
colite le postulat des paralléles dans les deux catégo-
ries de vérité classiquement regues, mais s'interroger
sur la sorte de vérité que recele le postulat lui-méme,
puisqu’il semble relever d’un rroisiéme genre de pro-
positions vraies. Cette idée remet en question le lien,
admis jusqu’alors, entre la géométrie comme science
de I'espace et la réalité spatiale telle qu’elle est per-

¢ue: la vérité des propositions géométriques peut
ne pas avoir d’incidence sur la vérité des pro-

08,9 positions décrivant I’espace physique.
e(@{/ Le mathématicien allemand Carl
%,  Friedrich Gauss (1777-1855) est le pre-
b mier a émettre des doutes sur le carac-
tere naturel du lien unissant I’espace
percu et la géométrie euclidienne.
Il en conclut que la géométrie eucli-
dienne n’a pas le méme caractere
de vérité que d’autres parties des
mathématiques telles que I"arithmé-
tique, ot la justification de la vérité de
postulats ne se pose pas en lermes aussi
problématiques. I déclare dans une lettre &
son collegue Heinrich Olbers : « Je deviens de
plus en plus convaincu que la nécessité de notre géo-
métrie ne peut pas étre prouvée, du moins pas pour des
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raisons humaines [ ...]. Peut-étre que dans une autre vie,
nous serons capables de mieux discerner la nature de
I’espace, ce qui est présentement inaccessible. D’ici
1a, nous devons placer la géométrie non pas dans la
méme classe que I'arithmétique, laguelle est purement
a priori, mais dans la méme classe que la méca-
nique. » Ainsi la géométrie est-elle identifiée a la
mécanique non seulement du point de vue externe, celui
des physiciens utilisant les concepts mathématiques a
leur usage, mais du point de vue interne aux mathé-
matiques elles-mémes.

Le désordre géométrique

A la suite de Gauss, plusieurs mathématiciens construi-
sent des géométries qui ne s’appuient plus sur le cin-
quieme postulat d’Euclide. Il devient possible de décrire
I’espace physique a I’aide de représentations géomé-
triques différentes de la représentation euclidienne : la
géométrie reste cohérente si I'on change le contenu
du cinquieme postulat en faisant I"hypothése qu'il
existe une infinité de paralléles a une droite en un point
donné extérieur a celle-ci, ou qu’au contraire il n’en
existe aucune. Ces géométries sont tout aussi rece-
vables que la géométrie euclidienne a partir du moment
ou le lien entre espace géométrique et espace pergu
est rompu. Trois conséquences majeures en découlent.

Du point de vue de la physique se pose la ques-
tion de savoir quelles géométries appliquer a
bon escient a quelles réalités naturelles:
immense programme de recherche qui
occupera les physiciens jusqu’a la
découverte de la relativité par Ein-
stein, et au-dela. Les modeles géo-
métriques des réalités physiques,
devenus instruments opératoires de
I'intelligibilité de la nature, connai-
tront un tel essor qu’il est aujour-
d’hui possible, avec le recul, de suivre
le cours de I’histoire de la physique
moderne comme celle des étapes de
sa géométrisation.

Du point de vue mathématique, la voie
ouverte par Gauss pose la question de la nature
de I’espace et de son rapport aux différents modeles
géométriques possibles. Quels rapports entretiennent
ces géométries puisqu’elles sont contradictoires ? Dans
quelle mesure peut-on représenter des espaces non
euclidiens dans I'espace euclidien? Y a-t-il moyen
d’élaborer une axiomatique générale de la géomé-
trie congue comme science de |'espace, qui englobe
les axiomatiques euclidiennes et non euclidiennes
comme cas particuliers ? La encore, le chantier est

Le mathématicien Carl Friedrich Gauss (1777-1855,
ci-dessus) renouvela la vision de la géométrie en
considérant une surface non pas comme la frontiére
d’un solide, mais comme un solide flexible et
inextensible de dimension nulle. Le plan euclidien,
soumis au postulat des paralléles, n'est alors plus
qu‘un cas parmi d'autres.
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Le postulat des paralleles

« Si une droite tombant sur deux droites fait les angles
intérieurs et du méme coté plus petits que deux droits,
A E g les deux droites, indéfi-
niment prolongées, se
rencontrent du cété ot
sont les angles plus pe-

tits que deux droits. »

immense et I'étude des rapports abstraits entre axio-
matiques occupera la recherche mathématique jus-
qu’a I'époque contemporaine.

Du point de vue philosophique enfin, la nature
de la vérité géométrique dans le cadre axiomatique
exige d’étre a nouveau interrogée : du fait de la pré-
sence possible de propositions semblables au cin-
quiéme postulat, certaines propositions résistent a
toute démonstration. En d’autres termes, la démons-
tration ne suffit plus a assurer le transfert d’évidence
d’une proposition & une autre. Par conséquent, les
savants risquent d’admettre. sans le vouloir, des pro-
positions contradictoires. La confusion axiomatique
qui résulte de cette constatation confine méme, pour
certains, a un véritable «délire », selon I'expres-
sion employée par le mathématicien et logicien alle-

mand Gottlob Frege (1848-1925) dans Les
fondements de I'arithmétique, car aucun
principe ne permet plus de juger du
caractére contradictoire de deux pro-
positions et, plus globalement, de la
vérité des propositions dans un
cadre axiomatique.

Confrontés a ce chaos théorique,
les mathématiciens orientent leurs
réflexions dans la direction oppo-
sée acelle choisie par les physiciens :

ces derniers, en prenant acte de la
diversité des modeles géométriques
de I'espace, jouent de cette pluralisa-
tion pour multiplier les modeles de la réa-
lité physique, favorisant I’exactitude
descriptive plutot que le maintien de la cohérence
unitaire des principes axiomatiques. Les mathémati-
ciens, en revanche, privilégient la quéte des conditions
a priori de la vérité axiomatique.

Nous allons voir qu’ils rechercheront ces condi-
tions dans /'arithmétique et son ordre calculatoire.
Mais le prix a payer sera lourd : la crise géométrique,
qui a introduit une rupture entre 1'intuition natu-
relle de I'espace et ses modeles géométriques, ne
sera surmontée qu’au prix d’un divorce a 'intérieur
méme des sciences exactes entre les physiciens, par-
tisans de la géométrisation multiple du monde, et les
mathématiciens, tentant de trouver dans I’arithmé-
tique, c’est-a-dire a l'opposé de tout rapport a I'es-
pace, une zone de sécurité pouvant servir de
fondement a I’ édifice mathématique. C’est dans cette
mise en ordre arithmétique que se développeral’idée
moderne de calcul.
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orsque, au XIX© siecle, une grave crise d’identité
secoue la géométrie, les mathématiciens en quéte
d’un fondement axiomatique de leur science, tour-
nent leurs espoirs vers I"arithmétique (voir Aux ori-
gines du calcul, page 50). Pourquoi cette discipline ?
Aurait-elle été épargnée par le débat sur la vérité
axiomatique 7 Non. Au x1x° siécle, I"arithmétique
a eu. a I'instar des autres sciences, son lot de bou-
leversements, qui ont conduit, tout comme en géo-
métrie, a la quéte d’une axiomatique dont découlerait
toute I’arithmétique. Cependant, cette quéte por-
tera, en partie, ses fruits. Une nouvelle théorie révo-
lutionnant I"usage de I'infini en mathématique est
a I'origine de cette remise en question : la théorie
des ensembles, fondée par le mathématicien Georg
Cantor (1845-1918). Cette théorie attaque I'usage
naif de I'intuition en arithmétique, qui a tendance
a tenir dans I'infini des raisonnements qui ne valent
que pour le fini.

Depuis " Antiquité grecque, la distinction entre
le fini et I'infini en mathématiques avait gravité autour
de trois notions: le fini. propriété des collections

dont on peut dénombrer les éléments, I"infini poten-
tiel, qui autorise les successions indéfinies telles que
la suite des entiers naturels, et I'infini actuel, qui
envisage d’un seul bloc les collections infinies, par
exemple la collection des nombres entiers ou celle
des nombres pairs. Jusqu’au X1x© siecle, I'infini actuel
n’avait pas droit de cité en mathématiques parce
qu’on limitait a I"infini potentiel toutes les démons-
trations faisant usage de I'infini. On avait démon-
tré par exemple deés I’ Antiquité qu’il y avait une
infinité de nombres premiers (nombres divisibles
seulement par eux-mémes et par 1), d’une part, en
montrant qu’il serait logiquement contradictoire qu’il
en fatautrement (voir ['encadré page 58)et, d’autre
part, en fournissant les moyens de localiser par le
calcul les nombres premiers dans la liste ouverte des
nombres entiers.

L'usage de I'infini en arithmétique était ainsi
encadré par les régles de la logique établies par Aris-
tote au 1v* siecle avant notre ére, dont trois formaient
I'armature de tout raisonnement : le principe de non-
contradiction, le principe selon lequel le tout est

La mecanisation

Peut-on construire un systéme d’axiomes a partir duquel les mathématiques

seraient déductibles ? Cette question conduisit les mathématiciens
du début du xx€ siecle a préciser la nature et le role du nombre.
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du monde

plus grand que la partie et le principe dit du tiers-
exclu qui permet. confronté a une alternative,
d’opter machinalement pour une branche si I"autre
estimpraticable (si une proposition P n’est pas vraie,
alors la négation non-P de cette proposition est
nécessairement vraie). Ce dernier principe intervient
par exemple dans la résolution du probleme suivant.
Sachant qu'un nombre rationnel est un nombre qui
s’exprime sous la forme d'un rapport entre nombres
entiers et qu'un nombre irrationnel ne peut pas s'ex-
primer sous cette forme, on peut se poser la ques-
tion : existe-t-il deux nombres irrationnels a et b tels
que soit rationnel ? Examinons si le nombrev2¥2 a la
propriété d’étre ou non rationnel. Par le principe du
tiers-exclu, la disjonction suivante est vraie: (_VE Zest
rationnel) ou (V2¥2n’est pas rationnel).

Siv22est rationnel,, il suffit de choisira =b =2
(dont on peut prouver qu'il est un nombre irration-
nel) pour répondre positivement & la question. Si V22
est irrationnel, il suffit de choisir a = V22 (supposé
irrationnel) et b = V2 (nombre irrationnel) pour
obtenir un nombre rationnel : (V2¥2)¥2 = (v2)2 =2, qui
est un nombre rationnel.

L’intervention du principe du tiers-exclu dans
cet exemple permet de démontrer I'existence de a et
b, mais ne permet pas de préciser les nombres ayant
la propriété recherchée. Confrontés a cette diffi-
culté, les mathématiciens remirent en question 1" usage
du principe du tiers-exclu, en particulier le mathé-
maticien néerlandais Luitzen Brouwer (1881-1966)
et I'école intuitionniste.

© Les génies de la science - Turing

Die logischen Grundlagen der Mathematik?).
Vo

David Hilbert in Géttingen.

Meine Untersuchungen zur Neubegriindung der Mathematik ) bezwecken
nichts Geringeres, als die allgemeinen Zweifel an der Sicherheit des mathe-
matischen SchlieBens definitiv aus der Welt zu schaffen. Wie nitig
eine solche Untersuchung ist, gewahren wir, wenn wir bedenken, wie
wechselnd und unpriizise die diesbeziiglichen Anschauungen oft selbst der
hervorragendsten Mathematiker waren, oder wenn wir uns erinnern, dal
von einigen der namhaftesten Mathematiker der neuesten Zeit die bisher
fiir die sichersten gehaltenen Schliisse in der Mathematik verworfon werden.

Zur vollstindigen Lisung der in Rede stehenden prinzipiellen Schwierig-
keiten ist, wie ich glanbe, eine Theorie des mathematischen Beweises selbst
notig. Diese Bewei rie habe ich hr unter der wirksamsten Hilfe
und Mitarbeit von Panl Bernays soweit fortgefiihrt, daB in der Tat durch
sic die einwandfreie Begriindung der Analysis und Mengenlehre gelingt;
ja ich glaube nunmehr so weit zu sein, daB man auch an die groBen
klassischen Probl der Mengenlehre von der Art des Kontinuumsproblems
und an die nicht minder wichtigen noch offenen Probleme der mathe-
matischen Logik erfolgreich wird herantreten konnen.

Diese ganze Theorie mit ihren langen und gchwierigen Entwickelungen
hier darzulegen, ist unméglich. Es haben sich aber im Laufe der Unter-
suchung eine Reihe von neuen Einsichten und Zusa hiingen herans-
gestellt, dig auch einzeln fiir sich und von den iibrigen losgelost Interesse
verdienen. Tch méchte eine solche, wie ich glanbe, neue Einsicht hier zur
Sprache bringen, die aullerdem gerade von der Art ist, daB sie den Kern
meiner Beweistheorie sehr tief beriihrt.

') Vortrag, gehalten in der Deutachien Naturforscher-Gesellschaft. September 1922,
) Vgl meine in Kopenhagen und Hamburg gehaltenon Vorteige, Albandlnngen
ans dem mathematischen Semi der Hamburgischen Universitit 1922,

- r -

La nouvelle arithmétique

= - -
de l'infini
Avec la théorie des ensembles, tout change: I'infini
actuel apparait en mathématiques. Depuis long-
temps déja, des mathématiciens audacieux comme
Thabit Ibn-Qura, les jésuites de I'école de Coimbre
ou Galilée avaient spéculé sur des faits troublants: il
€tait par exemple possible de mettre en correspon-
dance chaque nombre entier avec chaque nombre pair
et de conclure que la liste des nombres entiers et
celle des nombres pairs avaient un « poids » identique
(il y avait une correspondance bijective entre elles),
alors que 1'une des listes avait dewx fois moins d’élé-
ments que |’ autre !

Cette conclusion remettait en question les prin-

cipes logiques hérités des Anciens: dans ce cas en
particulier, la partie (les nombres pairs) semblait équi-

Le mathématicien allemand David Hilbert (ci-dessus)
et une page du fameux article publié en 1923 ou

il annonce son vaste programme de construction des
fondements des mathématiques, Die logischen

Grundlagen der Mathematik (Les fondements logiques

des mathématiques). Turing contribuera a montrer
que ce projet ne peut étre mené a bien. Page
ci-contre, le philosophe britannique Bertrand Russell
(1872-1970, a gauche) et le logicien allemand Gottlob
Frege (1848-1925, a droite), qui tentérent

de construire une logique axiomatique dont

ils auraient déduit toutes les mathématiques.
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Georg Cantor (1845-1918, ici en compagnie

de sa femme), fondateur de la théorie des ensembles,
introduisit le trouble dans I'arithmétique en osant
utiliser la notion d'infini actuel dans ses calculs.

valoir au tout (les nombres entiers). L'évidence était
violée et I'esprit se trouvait confronté & une contra-
diction, puisqu’une méme réalité ¢tait a la fois iden-
tique er non-identique a une autre. De fagon générale,
dans tous les raisonnements faisant usage de I'infini
actuel, les mathématiciens n”étaient plus certains qu’ils
pouvaient utiliser en I'état le principe du «tiers exclu»,
car rien ne départageait plus deux solutions mutuel-
lement exclusives. La logique classique semblait adap-
tée aux raisonnements portant sur des collections finies
ou potentiellement infinies, mais, dés que I'infini
actuel apparaissait, les principes de logique, pour-
tant réputés universels, perdaient toute validité.

Linfinité des nombres premiers

Dés I'Antiquité, les savants ont montré — par I'absurde — qu'il existait
une infinité de nombres premiers. Voici la trame du raisonnement d’Eu-
clide. Supposons que les nombres premiers sont en un nombre
fini n: py, Py, ... D, €t considérons le nombre p=p, x p, x ... x
p, + 1. Deux cas se présentent, selon que p est premier ou non. Si p
est un nombre premier, il existe alors un nombre premier (p) supé-
rieur & chacun des n nombres premiers p,, p,, ... p,, Nous obtenons
ainsi n + 1 nombres premiers, ce qui contredit I'hypothése de départ,
Si le nombre p n'est pas premier, alors il est divisible par un nombre
premier g. Cependant, aucun des nombres p;, p,, ... p, ne peut étre
son diviseur, car, par définition, la division de ppar chacun d’eux donne
un reste égal a 1. Ainsi, le nombre premier g qui divise p est différent
de p,, p,, ..., 8t p,, ce quicontredita nouveau I'hypothese selon laquelle
il n'existe que 7 nombres premiers. Cette hypothése n’étant vérifiée
dans aucun cas, il existe donc une infinité de nombres premiers.

Au Xxix°© siécle, Georg Cantor et, a sa suite, plu-
sieurs mathématiciens tels que Richard Dedekind,
proposent de définir la notion méme d’infini actuel
par I'équivalence du tout et de la partie. Ils s’enga-
gent alors dans une exploration de I'arithmétique
des collections actuellement infinies, dites « transfi-
nies », sans recourir aux principes classiques de la
logique et en s’en tenant a la manipulation de régles
formelles. Des écoles mathématiques différentes se
constituent, divergeant quant a I'usage de la notion
d’infini. Certaines prohibent I'usage de I'infini actuel
tandis que d’autres I'encouragent : 1'arithmétique
devient aussi « chaotique » que la géométrie. Do la
volonté d’y mettre bon ordre en procédant & une axio-
matisation de I’arithmétique, ce qu’entreprennent deux
mathématiciens italiens, Alessandro Padoa (1868-
1937) et Giuseppe Peano (1858-1932). Les deux
hommes développent des outils formels, en particu-
lier la description logique de I'induction de la suite
des entiers. qui rendront cette axiomatisation possible
(voir 'encadré page ci-contre).

La grammatisation
de I'axiomatique

Confrontés a cette situation de crise, tous les mathé-
maticiens reconnaissent cependant dans le fini et dans
I"infini potentiel de la suite des entiers une «zone de
sécurité » au-dela de laquelle la pratique des mathé-

faut s’entendre sur cette «zone de sécurité » ol réside
la certitude de I’arithmétique, dernier bastion des fon-
dements des mathématiques depuis que la géométrie
a déclaré forfait.

Un mathématicien joue un réle particulierement
important dans I"élaboration du diagnostic et du remede
a apporter a cette crise géométrique et arithmétique :
David Hilbert. Le mathématicien allemand réduit les
théories les moins siires (géométriques) aux théories
réputées plus fiables (arithmétiques). Il montre notam-
ment que la non-contradiction de la géométrie carté-
sienne se fonde sur la non-contradiction des nombres
réels: si I"arithmétique des nombres réels est non-contra-
dictoire, alors la géométrie cartésienne |'est aussi. Ainsi,
le probléme de la non-contradiction d’une axiomatique
est a la fois déplacé a une autre axiomatique et réduit
a une axiomatique plus fondamentale, celle de I"arith-
métique des nombres réels et des entiers.

Ultérieurement, Hilbert montrera que ce dépla-
cement, qui permet d’obtenir des preuves de non-
contradiction relative d’une axiomatique par rapport
a une autre, se réduit a la preuve de non-contradic-
tion absolue de 1'arithmétique des entiers: si on
démontre la non-contradiction de I’arithmétique des
entiers — telle qu’elle a été axiomatisée par Peano —,
on en déduit la non-contradiction de toutes les
autres axiomatigues. Reste a montrer cette non-contra-
diction: or le probleme semble d’une difficulté bien
plus grande et, a vrai dire, insoluble dans la mesure
ol le nombre, concept de base de toute arithmé-
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Larithmétique de Peano

1 1889, le mathématicien italien Giuseppe Peano | e ¥x (—s(x) = 0)
(1858-1932) répertoria les caractéristiques | (0 n'est pas le successeur d'un nombre natu-
structurelles des nombres naturels dans une | rel) ou %/ représente I'expression « quelque
liste d’axiomes énoncés dans la symbolique | soit » et — la négation.
logique. Cette derniére est un langage du premier ordre | » ¥x Wy (s(x) =s(y) = x=Y)
(c’est-a-dire un langage dans lequel il n'y a que des pré- | (des nombres distincts ont des succes-
dicats sur des objets du langage, et pas de propositions | seurs différents).
sur les propasitions), incluant I'identité. Lidentité (dont | e Vo (ot(0) A VX (0u(X) = ct(s(X))) = VX a.(x))
le symbole est «=») est définie par deux proprietés: 00 ~ représente la conjonction « et ». Ceciest
ea=a:a=b—b=a;(a=betb=c)—a=c (1) | leprincipe d'induction compléte: si une pro-
*a, =3, - 0(a) = 9(ay), (2) | priété o est vraie pour le zéro et si la phrase
ol1—> représente l'implication. Cela signifie que:1) [éga- | «Sio.est vraie pour un nombrex, o. est aussi vraie
lité est une relation réflexive, symétrique et transitive | pour son successeur s(x) » est exacte, alors la pro-
et2) quand deux objets sont identiques, lorsque I'un | priété o est vraie pour tout entier naturel.
des objets posséde une propriété @, le second objet | e VX Wy (X + 0=X) AX+8(y) =S(X +Y)
la posséde également. o WXV (Xxx0=0) AXXS(Y)=XXY+X
Le concept central de I'arithmétique de Peano est celui | Ces deux axiomes définissent par induction I'addi-
de successeur: tout nombre naturelx a un successeur. | tion et la multiplication.
Celui-ci ne peut étre écrit x + 1, car I'addition n'est | L'axiomatique ainsi construite par Peano permet-
pas encore définie. Peano note donc s(x) («succes- | tait donc d’induire toute la suite des entiers naturels.
seur» de x) le nombre qui suit x et précise que la | Restait & savoir si elle pouvait servir de fondement
fonction s est définie pour tout nombre naturelx. Il a | a l'arithmétique, c’est-a-dire si toute I'arthmétique
ainsi formalisé une propriété importante des nombres | était déductible de cette axiomatiqgue. Peano a
naturels («on peut toujours compter un de plus ») et | fondé une véritable école, dont I'un des éléves les
établi «tacitement » qu'il existe un nombre infini de | plus fameux, Alessandro Padoa, inventa une méthode
nombres naturels. permettant de déterminer si un axiome est indé-
Les constantes du langage de l'arithmétique de | pendantdes autres. Il présenta son résullat au congrés
Peano sont les suivantes: 0 (le nombre zéro), s (la | de Paris d’aot 1900, ce méme collogue ou Hilbert
fonction successeur), «+ » et «x », les opérations d'ad- | dressa, dans un exposé intitulé L'avenir des mathg-
dition et de multiplication. La signification de ces | matiques, une liste de 23 problémes ouverts capi-
constantes est définie par les axiomes suivants : taux pour les mathématiques.

tique, ne se réduit a rien d’autre. Les tentatives de  I'arithmétique — et la deuxieéme une axiomatique for-
réduction de la notion mathématique de nombre 4 la  melle. L’axiomatique 4 contenu comporte deux
notion logique d’ensemble expérimentées par Frege — sortes de propositions : des propositions finitistes, ¢’ est-
et Russell paraissent en effet inadéquates a Hilbert,  a-dire relevant du fini ou de I'infini potentiel et donc
car cette réduction extérieure a I'arithmétique produit  toujours vérifiables par des procédures qui s’effec-
des paradoxes (voir I'encadré page 60). tuent en un temps fini, et des propositions idéales
I s’agit donc de prouver la non- sans aucun contenu, qui ne sont pas veéri-
contradiction de 1'arithmétique sans fiables par ce moyen. Cette derniere caté-
sortirde l'arithmétique, comme les gorie comprend les propositions
mathématiciens I'ont fait jus- portant sur le transfini, dans les-
qu’alors en recherchant des quelles les symboles logiques «II
preuves intuitives de non-contra- existe » et « Pour tout» portent sur
diction ou par le biais de la les individus d'un domaine infini
notion d’ensemble. Pour y par- actuel. Hilbert espere réduire ces
venir, Hilbert transforme la
notion méme d’axiomatique
en la scindant en deux, I'une
continuant a jouer le role qu’elle
a toujours eu et 'autre servant
de grammaire & la premicre.
La premiere sorte d’axioma-
tique est une axiomatique a contenu
—celle qui s’est pratiquée chez Euclide
pour la géométrie ou chez Peano pour

Le mathématicien néerlandais
Luitzen Brouwer (1881-1966, ci-
contre) faisait partie du courant
intuitionniste. Pour lui, en mathé-
matiques pures, il n'existe pas plus
qu‘ailleurs de langage absolument
sir. Par conséquent, le principe du
tiers-exclu, qui n'affirme « rien d'autre
. que la décidabilité de tout probléme »,
n’est pas toujours vrai.
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I'aube de xx? siécle,
Frege et Russell ten-
térent de faire repo-
ser les mathématiques
surune base logique sdre. En par-
ticulier, ils s’efforcérent de mon-
trer que l'arithmétique se déduit
entiérement d'axiomes logiques.
Pour cela, ils construisirent, avec
beaucoup de génie, la succession
des nombres naturels a l'aide de
concepts purement logiques : ils
considérérent la classe O des
objets qui ne sont pas identiques
a eux-mémes. Les objets non
identiques & eux-mémes n'exis-
tant pas, cette classe Q est vide.
IIs définirent alors le zéro comme
la classe de toutes les classes
comprenant autant d’objets que
la classe 0.
La définition peut paraitre artifi-
cielle, mais elle leur permit de
construire tous les nombres natu-
rels. La définition du nombre un
utilise le fait qu'il n’existe qu'une
seule classe vide: le nombre un
est la classe des classes com-
portant autant d’éléments que la
classe dont le seul élément est
la classe vide. Le nombre deux
est alors la classe des classes
comportant autant d'éléments que
la classe dont les éléments sont
le zéro et le un; et ainsi de suite. ..
Hélas, ce début promeltteur se
heurta & un obstacle: dans une
lettre de 1902, Russell attira I'at-
tention de Frege sur un paradoxe,
connu depuis sous le nom d'an-
tinomie de Russell: appelons R
l'ensemble de tous les ensembles
qui ne se contiennent pas eux-
mémes comme élément. Par
exemple, I'ensemble des carottes
n'est pas une carotte et cet
ensemble appartient a R. En
revanche, I'ensemble des idées
est une idée et donc cet ensemble
n'appartient pas aR. L'ensembleR
se contient-il lui-méme ? Si la
réponse est non, R est un
ensemble qui ne se contient pas
lui-méme comme élément. I/

Construire les mathématiques sur une base logique sdire

appartient donc, par définition,
aux ensembles dont est com-
posé R, ce qui signifie que R se
contient lui-méme comme élé-
ment. Cependant, sil'ensemble R
est un élément de lui-méme, il
appartient a l'ensemble des
ensembles qui sont des éléments
d’eux-mémes et n'est donc pas
un élément de R. D’une affirma-
tion découle son contraire, et réci-
proquement. La contradiction est
insoluble. Le réve de Frege de faire
reposer tout I'édifice des théories
mathématiques sur le fondement
de la logique formelle s'effondra
avec la lettre de Russell. La défi-
nition des nombres naturels posait
la question suivante ; peut-on for-
mer a volonté des classes, des
classes de classes, des classes
de classes de classes, etc. 7 L'an-
tinomie de Russell montrait que
quelque chose n’'allait pas.

Russell s'efforga de la résoudre
en élaborant une «théorie des
types » : selon cette théorie, des
individus, des classes, des classes
de classes, elc., doivent apparte-
nir & différents types logiques. Il
établit ainsi une hiérarchie de types
logiques. Le théoréme «La classe
de tous les X est un X » n'est
ainsi ni vrai ni faux, mais tout sim-
plement dépourvu de sens.
Lorsqu'on remplace «X » par «hu-
main », I'absurdité est évidente.
Le probléme devient intéressant
quand «X » représente «la classe
qui ne se contient pas elle-méme
comme élément ». L'astuce de la
théorie des types de Russell
empéche de formuler I'antino-
mie de fagon sensée. Russell
modifia alors la construction des
nombres naturels, mais cela 'obli-
gea a ajouter a ses axiomes un
axiome d’infinité, selon lequel il
existe dans le monde un nombre
infini d’objets. Cette hypothése
impliquait, tout comme la théo-
rie des types, une limite a la dé-
duction purement logique de
l'arithmétique initialement visée.

propositions a leur forme grammaticale au sein de la
deuxieme axiomatique : par ce biais, il montrerait
qu’aucune contradiction ne survient de leur usage
dans les axiomatiques & contenu et qu’elles peuvent
donc étre utilisées par les mathématiciens. Comment,
toutefois, caractériser cette deuxiéme sorte d’axio-
matique ? On y trouve une seule sorte de propositions,
répliques de celles de I’axiomatique & contenu. Ces
propositions sont cependant dépourvues d’interpré-
tation et forment un systeme grammatical réglé par
la seule inférence logique congue comme procédure
effective, c’est-a-dire dans laquelle I'itération des
regles se fait toujours dans un cadre fini. Dans ce type
unique de propositions sont codés a la fois les signes
mathématiques et les signes logiques: ainsi tous les
signes sont-ils traités de la méme manicre et toutes
les propositions sont-elles soumises a un patron com-
mun, devenant des assemblages de signes matériels
d’écriture. L’axiomatisation formelle des axioma-
tiques a contenu joue donc, dans le cadre mathéma-
tique, un role analogue a celui de la grammatisation
dans les langues naturelles.

L’axiomatique formelle vise a engendrer une
réplique du domaine de validité de I’axiomatique
a contenu, constituée de propositions renvoyant a
des domaines finis, potentiellement infinis ou trans-
finis. Si la réplique, bien que finitaire, est fidéle,
on peut espérer répondre a la question de la non-
contradiction de I"axiomatique formelle. Et en
déduire si les axiomatiques a contenu sont contra-
dictoires ou non, c¢’est-a-dire si I’on peut utiliser

Bertrand Russell, caricaturé dans une version populaire de
son antinomie : le barbier du village est le villageois qui rase
les villageois qui ne se rasent pas eux-mémes. Le barbier se
rase-1-il lui-méme ? Oui et non...
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dans des raisonnements mathématiques des propo-
sitions englobant I"infini actuel.

Pour que la réplique formelle de I'axiomatique a
contenu soit fidele, il faut éliminer la signification des
énoncés et la difficile question de leur domaine de
validité fini, potentiellement infini ou transfini pour
s’en tenir & des conventions d’écriture gérant les
rapports entre propositions formelles. Dans la trans-
cription des formules en signes, la partie la plus
délicate consiste A créer des répliques des proposi-
tions transfinies. Du point de vue des régles de déduc-
tion des formules, il faut aussi s assurer que la déduction
s’opere toujours de facon effective, ¢’est-a-dire en
un nombre fini d’étapes.

Comment, a partir de 14, prouver la non-contra-
diction de la réplique formelle de I’axiomatique &
contenu ? En recherchant une preuve d’impossibilité :
Hilbert suppose I"existence d'une contradiction entre
les axiomes du systeme formel et essaye de montrer
que cette supposition est elle-méme contradictoire
—le raisonnement par 1" absurde étant considéré comme
licite dans le cas d’un systéme fini. Si cette non-
contradiction est établie, celle-ci se répercutera sur
I’axiomatique a contenu arithmétique et, de la, sur
les autres axiomatiques a contenu. Las, quelques
mathématiciens, au premier rang desquels le logi-
cien autrichien Kurt Godel, s apercoivent que les
outils formels ne captent pas tout ce qui fait I'objet
propre de I’arithmétique.

Les limites
du systeme hilbertien

Que s’est-il passé 7 Kurt Godel a découvert des
limitations internes a la formalisation qui compro-
mettent définitivement le projet hilbertien. En 1928,
Hilbert avait formulé trois questions capitales concer-
nant I’axiomatique formelle: premierement, I’axio-
matique formelle est-elle complete ? En d’autres
termes, toute formule peut-elle y étre démontrée ou
réfutée 7 Deuxiémement, I"axiomatique formelle est-
elle consistante, au sens ou aucune formule contra-
dictoire ne peut y étre engendrée a partir des axiomes ?
Troisiemement, I’ axiomatique formelle est-elle déci-
dable, ¢’ est-a-dire existe-t-il une méthode effective
pour décider si une formule quelconque est vraie ou
fausse ? Hilbert espérait fournir des réponses posi-
tives dans tous les cas: I"axiomatique formelle
serait compléte (elle engendrerait tous les théoremes),
consistante (elle n’engendrerait que les théorémes)
et décidable (il existerait une procédure effective pour
décider si toute formule est ou non un théoréme).
Les trois réponses. qui s'échelonnent entre 1931
et 1937, sont toutes négatives. La premiere est for-
mulée par Godel : une axiomatique formelle sus-
ceptible de servir de réplique a I'arithmétique des
entiers est structurellement incompléte, car on peut
montrer qu’il y a un «reste » arithmétique qui échappe
a I'axiomatique formelle quels que soient les amé-
nagements axiomatiques ultérieurs susceptibles de
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Kurt Godel a la terrasse d’un café a Vienne, en 1938.
En 1931, Godel fit chanceler I'édifice de Hilbert

en montrant que I'axiomatique formelle n'est ni
compléte ni consistante.

se produire. Le méme Godel répond négativement &
la deuxiéme question: la consistance de |"arithmé-
tique ne peut étre démontrée dans le cadre de I’axio-
matique formelle, du moins si I’on s’en tient a des
procédures qui ne font pas intervenir I'infini actuel.
La troisieme réponse négative est énoncée par Church
et par Turing indépendamment : il n’existe pas de
procédure effective susceptible de décider dans
tous les cas si toute formule est ou non un théo-
réme. Le probléme de la décision permet a Turing
de préciser ce qu'il entend par calcul: a la fois un
moyen de compter et un moyen de prendre des
décisions. On retrouve ainsi la double étymologie du
mot calculus.

Deux points concernant ces réponses négatives
méritent d’étre soulignés: d’une part, ¢’est par une
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preuve d’impossibilité qu’elles ont été formulées ;
d’autre part, il y a un reste qui échappe a la formali-
sation et il convient de s’interroger sur ce reste. Une
preuve d’impossibilité, contrairement 4 une preuve
classique qui dévoile le cheminement vers un résul-
tat, consiste a montrer qu’un résultat est inaccessible.
L'intérét d’une telle preuve réside dans le fait qu’elle
permet de ne plus chercher a obtenir un résultat, celui-
ci étant reconnu hors de portée compte tenu des outils
formels dont on s’est doté au départ. Cette preuve
est donc interne, dans la mesure ol. sans faire appel
a un domaine de validité élargi, elle délimite — de
I'intérieur —un périmétre de validité au-dela duquel
on ne peut obtenir de nouveaux résultats. En pratique,
une preuve d’impossibilité consiste & montrer que le
résultat escompté serait contradictoire: on suppose
au départ le résultat acquis et on montre qu’il entraine
une contradiction. Nous verrons que ¢’est par ce moyen
que furent obtenues les réponses négatives qui anni-
hilérent le projet hilbertien, en particulier celle de
Turing (veir La machine de Turing, page 72).

Le deuxieme point a trait a ce quelque chose de
plus contenu dans I’arithmétique «naturelle », que
I’axiomatique formelle ne parvient pas a capter. Quel
est ce « plus » de I"arithmétique «naturelle » des

Les travaux de Turing occupent une ligne

de créte entre une vision classique du monde
— déterministe, réductionniste et calculatoire —
et une vision déterministe et non prédictive,
qui est celle de la science moderne.

nombres entiers ? A cette question difficile, sur laquelle
mathématiciens, logiciens et philosophes des mathé-
matiques ont débattu jusqu’a aujourd’hui, Turing a
apporté des éléments de réponse au cours de son
itinéraire intellectuel : nous verrons que, pour lui,
ce qui échappe au processus de formalisation reléve
du champ géométrique, c’est-a-dire précisément de
ce que la formalisation axiomatique a tenté d’éli-
miner.

Par champ géométrique, il faut moins entendre
I’étude des figures et des principes de leur mesure
que le principe d'intelligibilité qui permet d’appré-

hender les formes structurées dans tous les domaines
des sciences de la nature, y compris en mathéma-
tique, et donc en arithmétique. Par ce biais, mathé-
matique et physique retrouvent cette parenté séculaire
qu’elles entretenaient au sein des sciences de la nature
avant les bouleversements géométriques et arithmé-
tiques du x1x® siecle.

De ce point de vue, Turing occupe une position
charni¢re dans le développement et la transformation
du programme formaliste fondé par Hilbert: il a poussé
le projet formaliste 4 ses limites extrémes en étendant
au maximum son champ de validité et. du méme
coup, tracé ces limites en s’ aventurant au-dela.

r - r -
Mécaniser I'esprit
Le projet de Hilbert et son échec relatif ont donné
lieu & une étape ultime dans la mécanisation du monde,
étape a laquelle Turing a puissamment contribué : la
mécanisation de I'esprit.

Nous avons vu que dans le cadre de I'axioma-
tique formelle, I'enchainement des propositions s’ef-
fectue a I'aide de la seule inférence logique, itérée
un nombre fini de fois. Sur quoi repose cette limita-
tion a un «nombre fini de fois» ? Il s’agit d'une
pure discipline de pensée, d’un
acte mental qui ne peut appa-
raitre explicitement dans aucune
régle puisqu’il est la condition
de leur applicabilité. En d’autres
termes, cette limitation est un
postulat philosophique sur la
nature du mental, qu Hilbert
exprime en 1923 sous la forme
suivante, dans ses Fondements
logiques des mathématiques :
«[...] notre pensée est finitiste ;
quand nous pensons se déroule
un processus finitiste. » Ainsi,
Hilbert, pour la bonne marche de I"axiomatique for-
melle, a supposé un principe que seul un postulat phi-
losophique justifie.

Turing, plus hilbertien qu’Hilbert, trouve le moyen
de « grammatiser » ce principe en proposant une
contrepartie formelle a 1"acte mental finitiste.
Cette contrepartie deviendra la définition méme du
calcul de Turing : un systeéme constitué d’un nombre
fini d’instructions, itérables un nombre potentielle-
ment infini de fois. Ainsi, en 1936, dans I'article
méme ou il répond négativement a la question de
Hilbert sur la décidabilité des mathématiques, Turing

La notion de bon ordre n’est pas formalisable : on ne sait pas formaliser le fait que nous nous représentons
la suite des nombres entiers sur une droite dans le sens de I'écriture, c’est-a-dire dans le bon ordre.
L'esprit n'engendre pas que des actes mentaux formalisables.
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se lance dans une analyse de I’acte mental sous-
tendant toute inférence logique au sein de I’axio-
matique formelle, c’est-a-dire I’acte mental
sous-tendant tout calcul.

Au lieu de décrire de I'extérieur 1’acte mental
finitiste, comme I’avait fait Hilbert, Turing demande
au lecteur de son article de se placer en pensée dans
la situation d’effectuer les actes mentaux, et de les
limiter au mouvement (finitiste) des signes: il incite
donc le lecteur & entrer dans un cadre de pensée fini-
tiste sans supposer qu’il y a un «extérieur» a ce
cadre, comme le laisse encore entendre le postulat phi-
losophique hilbertien. Dans cet état d’esprit, on peut
alors dresser la liste finie des « comportements »
qu’adopte un étre humain en train de calculer — un
«calculateur» (computer), selon le terme employé par
Turing : le processus mental devient une contrepartie
formelle au sein méme des signes.

Turing montre ainsi qu’il est possible de décrire
les étapes (en nombre fini) de I’acte mental forma-
liste sous une forme tabulaire. Cette table, que Turing
nommait « machine », est ce que nous appelons aujour-
d’hui un programme. En donnant une contrepartie
formelle d’un acte mental postulé, Turing a défini le
formel comme relevant intégralement du méca-
nigue. Ultime étape de la mécanisation du monde, la
mécanisation de 1’esprit cl6t le vaste mouvement qui
débuta avec la grammatisation des langues du monde
et la mécanisation de la nature. Ce mouvement de
mécanisation s’ achéve en incluant /'instrument méme
de la connaissance, |'esprit lui-méme.

Lintelligibilité informelle

La mécanisation de I"esprit n’est cependant pas le mot
de la fin: le projet de Hilbert, bien qu’ayant permis
de préciser un certain nombre de concepts, dont celui
de calcul, a débouché sur une impasse. La stratégie
de réduction des axiomatiques a 1"arithmétique for-
melle n’a pas eu tout le succes espéré. Godel, Turing
et Church ont montré — grand succes rationnel du pro-
jet hilbertien que de démontrer ses propres limites ! —
que le formalisme ne capte pas plusieurs caractéris-
tiques propres de I"arithmétique, pourtant fondamen-
tales. En particulier, certaines fagons de penser en
arithmétique, voire en mathématiques ou dans les
sciences de la nature en général, n’ont pas de contre-
partie dans la grammaire formaliste. Comme le fait
remarquer le mathématicien G. Longo dans 1" ou-
vrage coécrit avec le physicien F. Bailly Mathéma-
tiques et sciences de lanature ; la singularité physique
du vivant (2006), un principe aussi fondamental que
celui de bon ordre n’a pas de contrepartie formelle.
Or ce principe est a la base méme de notre compré-
hension géométrique de 1'arithmétique des entiers,
bien avant leur reconstruction logique au moyen de
I"induction : ¢’est grice au bon ordre, par exemple. que
nous nous représentons la suite des nombres entiers
sur une droite s’étendant indéfiniment dans le sens
de I"écriture et que nous comprenons instantanément
la notion de plus petit élément.
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Alan Turing, dans les années 1950.

11 existe donc autre chose dans Iesprit que la
contrepartie formaliste dun acte mental finitiste, c’est-
a-dire autre chose qu’un calcul. Et ce quelque
chose est lié a la perception de formes ayant pour nous
un sens, comme la représentation mentale de ladroite
numérique dotée d’un bon ordre. Une conséquence
fondamentale découle de cette constatation: il est
nécessaire de redéfinir la notion méme d’esprit a
partir de principes d’intelligibilité qui ne soient pas
exclusivement mentaux — c’est-a-dire qui ne soient
pas «contenus » dans un «intérieur », plus ou moins
assimilé au « cerveau » —, mais déja présents dans les
langues naturelles ou la nature physique.

Cette énigme de ['au-dela du formalisme, autre-
ment dit de Iintelligibilité de formes porteuses de
sens, fait, pour nous aujourd’hui, toute la valeur des
recherches futures de Turing. Ses travaux occupent
une ligne de créte entre une vision déterministe, réduc-
tionniste et calculatoire du monde — dans la lignée
de la science de 1'age classique — et une vision
déterministe, mais non prédictive du monde, qui
est celle de la science moderne et que Turing a magis-
tralement contribué a fonder.
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ous avons vu que dans son article On computable
numbers, Turing définit le calcul comme un systéme
constitué d’un nombre fini d’instructions, itérables un
nombre potentiellement infini de fois. Or cette démarche
est connue et pratiquée depuis plusieurs millénaires.
Pourquoi, alors, la définition de Turing bouleversa-t-
elle notre vision du calcul ? Pour le comprendre, retour-
nons aux sources de cette procédure.

La notion de calcul a toujours été associée a
I'exercice méme de I"activité mathématique, et on ima-
gine mal qu'il puisse en étre autrement. Cette ancien-
neté va méme bien au-dela de ce que I'on imagine
généralement: /'invention de |'écriture en Mésopota-
mie est liée a la représentation des nombres et au cal-
cul, parallélement ala transcription des sons des langues,
comme en témoigne le grand nombre des tablettes les
plus archaiques servant & la comptabilité. Ainsi, ladécou-
verte du caractére précis et déterminé du nombre est
liée a la stabilité offerte par le support écrit et a I’as-
pect tabulaire des présentations qu'il rend possible, peut-
¢tre avant que ce type de support ne soit utilisé a d’autres
fins telles que I"enregistrement des langues parlées.

Les découvertes archéologiques récentes en Méso-
potamie nous enseignent une autre chose, capitale
pour notre propos: mélées aux tenues de compte

Special Collections and Rare Books, University of Minnesota Libraries

Mecaniser le calcul

Lorsque, au ix¢ siecle, Al-Khuwarizmi développe la notion d’algorithme,
le calcul connait une profonde révolution. Une nouvelle étape est franchie
au debut du xxé siecle, autour de la notion de calculabilité.
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des troupeaux ou des récoltes, les tablettes numé-
riques mésopotamiennes contenaient des amorces de
procédés de calcul, détachées de tout contexte et donc
susceptibles d’avoir une portée générale. Ainsi, le
support écrit permettait d’adopter un méme angle
d’attaque pour traiter des objets que I’on avait besoin
de compter et des procédés de calcul abstraits ayant
les nombres pour seul support. Certes, les civilisations
de tradition orale possedent des procédures de calcul,
ot les parties du corps et les gestes sont associés au

Un texte proto-sumérien (fin du v millénaire avant
notre ére) exposant un exercice portant sur de
grandes quantités de pain et de biére et utilisant
un systéme numeérique «bisexagésimal», précisé
dans le schéma au-dessus du texte : dés la fin

du wv* millénaire avant notre ére, les tablettes
mésopotamiennes contenaient des ébauches

de procédures de calcul.
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dénombrement. Mais les comptables-mathématiciens
de Mésopotamie s’en €loignent et introduisent une
notion de calcul qui reste la notre : pour nous comme
pour eux, un calcul est une séquence de gestes en nombre
fini @ exécuter dans un certain ordre sur un ensemble
d’éléments ordonné 2 I"avance, séquence dont on peut
indiquer les étapes par écrit, ce qui rend la procédure
réutilisable a I'infini, dans différents contextes.

Prenons quelques exemples de procédures. Le
plus familier est lié a I'écriture des langues: la trans-
cription d’une phrase orale au moyen des lettres de I"al-
phabet exige 1"application d'une procédure. Comme
I"apprennent les écoliers, les sons du frangais sont ren-
dus par des lettres ou des assemblages de lettres de
Ialphabet. Evidemment. dans le cas des langues, la pro-
cédure de transcription n’est pas toujours rigoureuse
et les écoliers ne connaissent que trop les pieges qui se
cachent dans les nombreuses facons possibles de
transcrire un méme son. I ne s’agit donc pas a pro-
prement parler d'un calcul, parce que le résultat n’est
pas uniforme. Néanmoins, I'exemple donne une idée
de la nature d’une procédure: a partir d’un ensemble
d’éléments ordonné au préalable (ici la concaténation
des sons tels qu’ils sont ordonnés dans la parole pour
former des mots), la procédure de transcription met en
correspondance cet ensemble des sons et le répertoire
des lettres composant I"alphabet.

Qu’est-ce qu'un calcul?

Les procédures mathématiques sont plus rigoureuses
car elles portent sur des nombres, dont la transcription
en signes est univoque et uniforme. C’est le cas de
celles développées pour effectuer les quatre opéra-
tions arithmétiques usuelles. Dans notre systeme déci-
mal, par exemple, nous «posons» les opérations:
nous superposons les nombres en colonnes
correspondant aux chiffres des unités, dizaines,
centaines, etc. (voir la figure ci-dessus). Cette
utilisation de la position des chiffres est
une procédure de caleul, qui permet d’ef-
fectuer I'opération rapidement tout en mini-

misant les erreurs. A I'inverse, certaines

activités ne peuvent se mettre sous forme

de procédure: ¢’est le cas des jeux de hasard

comme laroulette des casinos dont le cinéma
a popularisé I’exemple en montrant des
illuminés hantant les salles de jeux a la
recherche de I'algorithme qui permettrait de
gagner i la roulette a tous les coups...

Notons que la notion de procédure ne se limite
pas au strict domaine numérique : elle a d’autres appli-
cations scientifiques, en géométrie ou en logique. Dans
ce dernier cas, le mathématicien anglais George Boole
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Une addition, posée a I'occidentale. Cette présentation de I'opération est une procédure
de calcul. On additionne successivement les chiffres d'une méme colonne en ajoutant le
nombre d‘unités a la colonne suivante quand le résultat est plus grand que dix.

Page ci-contre, une tablette babylonienne du xx¢ siécle avant notre ére, sur laquelle sont
répertoriés des comptes d’animaux (chévres, moutons). Les nombres et les calculs sont
indissociables de l'invention de I'écriture en Mésopotamie.

(1815-1864) a congu des moyens de vérification de la
vérité ou fausseté des propositions élémentaires dans
le cadre d’un calcul: il attribua les deux valeurs pos-
sibles vrai et faux a des éléments P et Q représentant
des propositions et détermina les valeurs de vérité que
ces éléments peuvent prendre quand ils sont soumis a
des opérations logiques (la négation, la conjonction
«et», I'exclusion «ou» et I'implication «implique »,
voir la figure page 66). La procédure qu’il a mise en
place consiste a dresser un tableau ot tous les cas pos-
sibles sont répertoriés.

Ainsi, toute question portant sur les éléments d’un
ensemble qui peut recevoir une réponse sous la forme
d’une suite réglée de gestes indéfiniment réitérables
peut étre résolue & I'aide d’une procédure, pourvu que
1’on en circonscrive clairement les étapes. Bien entendu,
la procédure ne fait pas le tout de I"activité mathéma-
tique : elle est plutot un regard porté aprés coup sur
une activité déja concue et des objets déja mis en
place (par exemple la conception d’un ensemble bien
ordonné d’éléments). Par conséquent, la mise au point
d’une procédure de calcul recquiert une conception du

Certains problémes ne sont pas solubles au moyen
d’une procédure de calcul : aucune procédure, par
exemple, ne peut déterminer

sur quel nombre tombera la bille de Ia roulette,
au grand dam des joueurs.




P | @ |nonP |Peta |Pouq | Pimplique
(PouQ)
Vrai Vrai Faux Vrai Vrai Vrai
Vrai Vrai Faux Faux Vrai Vrai
Faux | Vrai Vrai Faux Vrai Vrai
Faux | Faux Vrai Faux Faux Vrai

Une table de vérité telle celle ci-dessus est une
procédure qui ne s'applique pas au domaine
numérique, mais a des propositions vraies ou fausses,
telles que « Turing aime les mathématiques »
(proposition vraie) et « Pluton est une planéte »
(proposition fausse, semble-t-il aujourd‘hui).

temps particuliére : celle-ci implique d’une part que soit
donné unensembled’éléments fors du temps et, d’ autre
part, que lors de I'exécution de la procédure, I'inter-
vention du temps ne définisse qu'une séquence finie.
Il faut distinguer ici le calcul d’une valeur exacte
de celui d’une valeur approchée. Dans le cas d’une valeur
exacte, le calcul s’arréte au bout d’un temps fini. Dans
le cas d’une valeur approchée, atteindre le degré d’ap-
proximation défini a I"avance marque la fin du calcul,
qui se poursuivrait indéfiniment sinon. Ainsi, le calcul
est toujours fini dans son exécution, que le résultat

Un algorithme de calcul

our approcher une valeur ¢ pour laquelle une fone-
tion f s'annule, on procéde par dichotomie: on déter-
mine deux nombres a et b tels que les valeurs f(a) et
f(b) soient respectivement positive et négative, et on

calcule la valeur def(x,) pour le milieu x, dea etb. Sif(x,) =0,
onatrouvé la so!ut:an Sif(x,) est posmve on calcule la va!eur
f(x,) pour le milieu x, de x, er b. Sif(x,) est négative, on cal-
cufe la valeur f(x,) pour le milieu x, de aetx,. On regarde de
méme le signe de f(x,) et on rérrére le procéde ;usqu 'a obtenir
une valeurx, quis approche de c avec la précision souhaitée.

attendu soit une valeur exacte ou seulement appro-
chée. De ce point de vue, un calcul approché peut
durer indéfiniment si on cherche une précision tou-
jours plus grande (comme en témoigne par exemple
I’expansion décimale infinie d’un nombre comme 1),
mais a un degré d'approximation fixé a I'avance,
une procédure de calcul se termine toujours par un
résultat parce qu'une telle procédure est toujours
constituée d’instructions en nombre fini.

L'algorithme:
une vieille histoire

Les procédures de calcul sont donc trés anciennes
et on en retrouve la trace a toutes les étapes de
I"histoire des mathématiques et dans toutes les
civilisations. Au début du deuxiéme millénaire avant
notre ére, par exemple, les Babyloniens utilisent une
procédure qui donne I'inverse 1/n d’un nombre n
(voir la figure page 67) et leur permet ainsi de
diviser par le nombre n (la division « directe » n’étant
pas pratiquée). Au 111° siécle avant notre ére, les Grecs
dressent la liste des nombres premiers grice a une
procédure dppelee «crible d’Eratosthéne » (voir I'en-
cadré page ci-contre). Entre les 111° et 1" siecles avant
notre ére est composé le Classique de la tradition
mathématique savante de la Chine ancienne, Les
Neuf chapitres sur les procédures mathématiques,
qui présente les procédures de référence de la cul-
ture chinoise. Au x11° siécle, les Indiens développent
une procédure tabulaire pour effectuer les multipli-
cations, ol une place est aménagée a chaque étape
pour les calculs intermédiaires (voir la figure en haut
de la page 70).

Cependant, la notion de procédure de calcul ne fut
considérée pour elle-méme, en tant qu’objet mathé-
matique a part entiere, que dans le monde musulman
médiéval : jusqu’alors utilisée en mathématiques en
tant qu’outil pratique, la notion de procédure de cal-
cul ne devint un objet mathématique qu’avec les
premiers traités d’algebre de cette époque, en parti-
culier ceux d’un mathématicien persan de langue
arabe, Muhammad ibn Musa Al-Khuwarizmi (fin du
VI siecle-début du 1x¢ siecle). Le nom de ce mathé-
maticien donna dans les langues européennes, via
I’Espagne arabe, le terme «algorithme » qui, depuis,
désigne une procédure de calcul.

Pourquoi Al-Khuwarizmi a-t-il éprouvé le besoin
de considérer la procédure de calcul comme un
objet mathématique ? Une question générale de I’al-
gebre consiste a se demander si une équation pos-
seéde une solution dans le domaine numérique donné
au départ. Cette question implique de circonscrire le
domaine numérique dans lequel les solutions pos-
sibles existent. Par exemple, dans I’ensemble des
entiers naturels positifs, les opérations de soustrac-
tion et de division n’ont pas de solution lorsque leur
résultat est un nombre négatif ou une fraction. Une
telle circonscription équivaut a préciser le domaine
ol il n'existe pas de solution (en I’occurrence le
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Le crible d’Eratosthéne

és le 11f siécle, les Grecs avaient trouvé une

TURING

CENTAINES
procédure de calcul pour dresser la liste des N I o 2
nombres premiers : le crible d'Eratosthéne. Le R B
crible est évoqué dans le premier volume de g Peada  EE ug be B
Introductio arithmetica de Nicomagque de Gérase (vers 100) : PG Sy S et U
pour déterminer les nombres premiers inférieurs a un BE Skt igh o e
entier n, on écrit la suite des nombres compris entre 2 A sl Dduf ap
etn. On supprime ensuite tous les multiples (supérieurs e St e
4 2) de 2, c'est-a-dire un nombre sur deux a partir de 2, Pl L e
puis tous les multiples de 3, ¢'est-a-dire un nombre sur TR B
trois 4 partir de 3, puis tous les multiples de 5, c’est-a- o T
dire un nombre sur cing a partir de 5, puis de méme les dptestup eyl
multiples de 7, de 11, de 13 et ainsi de suite. Les nombres i B e
restant 4 la fin du tri constituent la totalité des nombres o wia e Ty shale e
premiers inférieurs an. DORRE R KA
pidgee Ml EdRs
En rouge, le crible d'Eratosthéne pour n = 100. Les nombres el de la colonne 3: elle est occupée par un point
premiers sont indigués par des carrés noirs. Par exemple, sur la (en rouge), donc 4603 est premier. Les colonnes
premiére ligne apparaissent les nombres premiers inférieurs a paires de chaque bloc (sauf la colonne 2 du premier)
10:2, 3, 5, 7. En bleu, le crible d'Eratosthéne pourn = 10000 : sont loutes vides, car elles contiennent les multiples
chaque bloc représente une centaine. Par exemple, le bloc entouré de 2. Les colonnes dont le numéro se termine
en rouge correspond  la centaine entre 4600 et 4699. Pour savoir par 0 ou 5 contiennent des multiples de 5 et sont
$i4603 est premier, on repére dans ce blac I'intersection de la ligne 0 aussi vides.
domaine des entiers négatifs). De méme, I'étude algé-
brigue des cas non intuitifs comme celui des équa-
tions du second degré — domaine de recherche engagé
par Al-Khuwarizmi —ou d’un degré supérieur néces-
site la définition du domaine numérique dans lequel
les solutions possibles existent. Or ce domaine, s’il
existe, doit étre accessible au moyen d'une procédure
de calcul. On comprend des lors le role que joua la
notion d’algorithme pour elle-méme : elle permit non
seulement de répondre 2 une question générale (par Y
exemple comment trouver les nombres premiers ?),
mais de §”interroger sur la solvabilité en général d’une <
question pour un domaine donné. Etudier la nature
etla portée des algorithmes selon les domaines numeé- 7
rigues ol ils interviennent devint alors une tiche mathé- T'I 3
matique a part entiére. 1" e L ?%,ﬁ
Quelle fut la nature de I'intervention de Turing dans ) N1 / ; 4 %ﬁ
cette histoire multi-millénaire ? En un mot, il contri- / i 7 g
bua 2 définir la nature de la notion d’algorithme dans 7/ 3 %
le cadre du formalisme hilbertien en précisant ce que Sl L! %
signifie «circonscrire un domaine de solutions », ¢’est- =) %
a-dire en précisant les rapports entre les deux aspects m Tﬁ ’%;
de la notion d’algorithme: d’une part la délimitation B
— W =
o .I 5
Reproduction d’une tablette datée de I'ancien dge ﬁ " g -y » ‘1‘%
babylonien (2000-1650 avant notre ére) oll est mis e -]
en ceuvre un algorithme pour déterminer l'inverse < | @3"
d'un nombre a travers cing exemples. La démarche % 9&\

consiste a calculer I'inverse d’'un nombre a partir
des inverses de deux nombres plus petits, déja connus
et répertoriés dans une table « standard ».
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Entretien avec Clarisse Herrensch-
midt, chercheur au cnRrs, Laboratoire
d’anthropologie sociale du Collége
de France.

Pour la Science: Vous étes anthro-
pologue de I’écriture, spécialiste
de I’Orient ancien et de I'appari-
tion de Ia monnaie frappée en Gréce
ancienne. A premiére vue, votre
terrain de recherche ne vous pré-
disposait pas a vous pencher sur

tique, phase de I'istoire de I'écriture

la naissance de I'informatigue, ni |
a rencontrer un personnage comme |

Turing. Pourtant, dans voire der-
nier ouvrage a paraitre prochai-
nementLes trois écritures. Langue,
nombre, code (Collection Sciences
humaines, Gallimard, Paris, 2007),
vous consacrez toute une partie a
l'informatique et au réle qu’a joué
Turing dans la naissance de celle-
ci. Qu'est-ce qui vous a amenée a
vous intéresser a Turing et a I'in-
formatique ?

Clarisse Herrenschmidt: L'in-
formatique est Ia troisieme étape,
contemporaine, d'une vieille histoire,

celle de I'écriture, considérée dans |

la zone qui va du Moyen-Orient au
Proche-Orient, du Proche-Orient &
la Méditerranée (Gréce antique,
Rome), et en Europe médiévale,
moderne et contemporaine (I'en-
semble Chine-Corée-Japon ayant
une autre histoire graphique). Dans

Bulle-enveloppe et calculi de Suse,

en argile crue, vers 3 300 avant notre
ére. 5a surface porte des signes en
forme d’encoches, identigues aux cal-
culi enfermés a I'intérieur : cela évitait
de briser I'enveloppe

pour en connaitre le

contenu.

| VY] P

cette zone, la volonté de rendre
visibles les nombres favorise
le développement des trois
grands types d'écritures :
écriture de la langue, du
nombre et du code. La
premiére étape a com-
mencé a Uruk et Suse, en
3 300 avant notre ére, par
la représentation de nombres
pour une chose, suivie de I'écri-
ture des langues. La deuxiéme étape
est I'apparition en Gréce, vers 620
avant notre ére, de la monnaie frap-
pée: la piéce de monnaie est vecteur
et support d’une écriture arithmé-
tique, ot le nombre est une forme
abstraite. Le rapport entre écriture,
nombre et monnaie a évolué grace
a I'emprunt, en Europe du Moyen
Age, du 0 et des chiffres indo-arabes
que nous utilisons toujours. La troi-
siéme étape, qui commence a peine,
est celle de I'informatique, nouvelle
écriture de nombres. Turing ouvre |
cette étape de I'histoire des

signes en révélant un nouvel
aspect des nombres. Voild pourquoi |
il occupe une place éminente dans '
ma recherche.

Pour la Science: Vous montrez que
I'écriture est d’abord liée, a I'ori-
gine, a I'écriture des nombres. Pou-
vez-vous préciser le rapport entre
calcul, écriture des nombres et
écriture des langues ?

Les premiers signes

d'écriture, vers 3 400 avant nolre ére,
provenant de Suse et d'Uruk:

il y a autant de marques numérales
que de guantités a noter.

Clarisse Herrenschmidt : Au
V¢ millénaire avant notre ére, au
Moyen-Orient, I'écriture est reliée a
des pratiques comptables. On pas-
sait un contrat entre deux personnes,
I'une livrant a I'autre un certain
nombre d'objets, par exemple les
vaches d'un troupeau. Pour maté-
rialiser le contrat, on fabriquait des
boules creuses d‘argile, les bulles-
enveloppes, dans lesquelles on pla- |
cait des calculi, sorte de billes
représentant les quantités des objets
a dénombrer. Ces boules
creuses

étaient scellées pour garantir I'au-
thenticité de I'accord des contrac-
tants. Puis on les confiait au
messager qui devait acheminer les
biens. A l'arrivée, on cassait la boule
d‘argile pour vérifier si les quanti-
tés fournies étaient bien les quanti-
tés commandées.
Plus tard, on inscrivit 4 la surface
des boules des signes représen-
tant les calculi qu'elles contenaient :
ce sont les premiers « chiffres ».
Enfin, on remplaga les boules par
des tablettes sur lesquelles étaient
| écrites les quantités des biens dont
on gardait la trace et des signes



représentant la nature de ces biens.
L’écriture est apparue en Mésopo-
tamie eten Iran a la faveur de ce pro-
cessus. Elle permet de manipuler les
nombres —ily eut de grands mathé-
maticiens en Mésopotamie et en
Egypte mais pas seulement. L'écri-

ture des langues consiste en une |

analyse de segments de plus en plus
petits du discours : division de
I'énoncé en mots (systémes a logo-
grammes), division du mot en syl-
labes (syllabaires); division de la
syllabe en consonnes et espaces
(alphabets consonantiques); divi-
sion de la syllabe en consonnes et
voyelles (alphabets consonantiques
et vocaliques).

Pour la Science : Pour vous, quels
rapports entretiennent monnaie
et calcul, a travers I'histoire du
développement des écritures ?

Clarisse Herrenschmidt: La
notion savante de nombre ne dif-
fuse pas en dehors de cercles étroits.
En revanche, la circulation de la
monnaie, laquelle résulte de I'écri-
ture des nombres, a joué un role
capital dans les pratiques calcula-
toires de cette partie du monde.
Apparue en Italie & la fin du Moyen
Age, la comptabilité en partie double,
mettant en rapport le débit et le cré-
dit, ou autrement dit la dépense et
les moyens dont on dispose pour
I'honorer, en est un exemple. La
monnaie transforme en pratique
sociale le nombre et, de fagon plus
générale, le calcul arithmétique.

Pour la Science: Comment réagis-
sez-vous a la phrase de Turing,

écrite en 1950 : « Pour moi, méca- |

nisme et écriture sont presque
synonymes » ?

Clarisse Herrenschmidt: C'est |

une description minimale de /'ordi-
nateur (qui n'écrit que des nombres)
dans le contexte de I'histoire géné-

rale de I'écriture. Potentiellement, |

tout traitement reléve d’un méca-
nisme. La généralisation de I'écri-

ture des nombres passe par une
généralisation de la notion de trai-

tement et, par conséquent, par une |

généralisation du cadre mécanique.
Les machines ont bien un lien intime
avec |'écriture des nombres et, indj-
rectement, avec l'écriture des
langues. Vous voyez qu'on n'est pas
Join de la phrase de Turing !

Pour la Science : Nous parlions a
I'instant de traitement. On présente

expression du mental, lequel serait
identifiable a un traitement, jus-
tement. Pour vous au coniraire,
I'apparition de I’informatique
reléve davantage de la pratique
sociale collective que représen-
tent I'écriture et la monnaie, que |
de la psychologie individuelle.

Comment, selon vous, s articulent
Ia notion de traitement et la sphére
du mental ?

| souvent l'informalique comme une |

Clarisse Herrenschmidt: Ona |

eu trop souvent tendance & « men-
taliser » le traitement informa-
tique et méme, encore récemment,
a identifier fonctionnement mental
et traitement informatique. Mais
cela revient & occulter toute I'his-
toire de ['écriture des nombres et
des langues : quand on envisage
I'esprit comme une machine, on ne
se rend plus compte que la machine

elle-méme est le produit d’une |

société et du développement pro-
gressif des techniques de I'écriture.
L’écriture rend visibles d’abord
les nombres et leurs rapports,
ensuite les langues parlées. Cette
visibilité nous permet de déléguer
4 des machines qui nous sont exté-
rieures le soin d’effectuer une par-
tie du traitement sur les signes:
voila ce qui constitue la profonde

originalité de la culture écrite dans |
la région du monde dont nous par- |

lons, et non pas le dévoilement

anhistorique de je ne sais quelle |

nature du « mental ».

Pour la Science : Turing est I'auteur
d'un célébre théoréme d’impos-

Luca Pacioli (1445-1517), moine
mathématicien italien, présente dans
son ouvrage Summa de arithmetica,
geometria, de proportioni et de
prnparlmnama (Venise, 1494) la méthode
vénitienne de fenue des comples,
aujourd’hui dénommée complabilité
en partie double.

sibilité touchant le calculable, théo-
réme qui est une des bases de
I'informatique. Comment I'inter-
prétez-vous du point de vue anthro-
pologique ?

Clarisse Herrenschmidt: Quand
on se rend compte que le systeme
des signes que l'on posséde n'est
pas adapté a la réalité mathématique
que I'on vise, on est amené a trans-
former le systéme des signes en
question. C’est ainsi depuis que
les mathématiques existent en tant
que savoir autonome. Turing ne
fait rien d’autre a partir de la décou-
verte de son théoréme d'impossi-
bilité de 1936 il trace des limites
au caleulable dans le systéme d'écri-
ture qu’est la machine de Turing,
se demande si ces limites sont
stables, se pose la question de leur
dépassement possible, en mathé-
matiques mais aussi en physique et
en biologie. De ce point de vue, il
est I'héritier de plein droit d’un tré-
sor intellectuel que nous cultivons
depuis plusieurs millénaires, et dont
je retrace, dans mon livre, les
grandes étapes.
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Dés le xi° siécle, les Indiens effectuaient

les multiplications & I'aide d’'une procédure de calcul.
Ci-dessus, un exemple de multiplication donné dans

un commentaire du livre indien le Lilavati de Bhaskara
(xiF siécle), écrit par Ganesa, astronome indien du

xvF® siécle. La multiplication de 135 par 12 est présentée
sous forme de table. Les résultats des produits
élémentaires sont disposés dans chaque case de la
table, les unités étant placées dans le triangle inférieur
et les dizaines dans le triangle supérieur. Puis on
somme les unités, les dizaines, etc.

d’un périmetre de calculabilité et, dautre part, la déter-
mination des solutions. Turing montra qu’en délimi-
tant un périmetre de calculabilité pour un probléme
traduit formellement, on s’assure que des solutions
existent et que cela vaut la peine de les chercher. Avec
Turing, I’algorithme devint non seulement un objet
mathématique, mais un objet mathématique que 1’on
peut manipuler formellement, au méme titre que le
nombre en arithmétique. A partir de ses travaux, un
nouveau champ de logique mathématique s’est consti-
tué dans les années 1930 —la théorie de la calculabi-
lité —qui arendu possible I’avénement d”une nouvelle
discipline, I'informatique.

Les nombres de Godel

Rappelons la situation : nous sommes en 1931. Hilbert
a lancé un vaste programme dont le but est de repré-
senter toutes les propositions mathématiques par le biais
d’une axiomatique formelle (voir La mécanisation du
monde, page 56). Dans ce contexte, Gidel a répondu
par lanégative aux deux premiéres questions posées par
Hilbert: I'axiomatique formelle est-elle compléte (toutes
les propositions vraies sont-elles démontrables i partir
des axiomes du systéme formel) ? Est-elle consistante
(peut-on démontrer, a partir des axiomes du systéme
formel, que I"axiomatique formelle est non-contradic-

toire) ? En outre, sa démonstration suggere que laréponse
a la troisiéme question de Hilbert, le probleme de la
décision (peut-on toujours décider si une proposition
est vraie ou fausse a partir des axiomes du systéme
formel ?), est aussi négative. Voyons pourquoi.

Godel mit au point une technique originale pour
parvenir a son résultat. Il partit d’un systéme formel
qui empruntait les axiomes logiques i un systéme
formel que Russell et Whitehead avaient concu en
1910-1913 (Principia Mathematica) et les axiomes
arithmétiques a I"arithmétique formalisée de Peano.
Il'y coda les propositions en leur attribuant des
nombres entiers : étudier les propositions dans le sys-
teme formel revenait alors a étudier les nombres
entiers qui les représentent, ces nombres entiers étant
soumis aux lois classiques de I"arithmétique (voir
Godel. Logique 4 la folie, Les Génies de la Science
n°20, aoiit 2004). Appliquant le méme raisonnement
que le paradoxe du menteur qui énonce : « cette phrase
est fausse », Godel montra que, dans son systéme for-
mel, la phrase «La proposition de nombre x n’est
pas démontrable » peut étre représentée par une for-
mule arithmétique F(x), et que cette formule arith-
métique s’applique au nombre fqui la représente dans
le systeme formel, ¢’est-a-dire a elle-méme. En
d’autres termes, il construisit la formule F(f), qui
dit d’elle-méme qu’elle n’est pas démontrable, tout
comme le paradoxe du menteur rend impossible la
distinction du vrai et du faux. Cela signifie que dans
un systéme d’axiomes que I’on suppose non-contra-
dictoire tel que le systeme formel de Gadel, la for-
mule F(f) dit d’elle-méme qu’elle n’est pas
démontrable formellement ; elle est donc indécidable,
au sens ot1 I'on ne peut pas décider a I"aide des axiomes
si elle est vraie ou fausse.

Ainsi, le théoréme de Gdel semble régler le pro-
bléme de ladécision: puisqu’il existe au moins une pro-
priété¢ indécidable, la réponse au probleme doit étre
négative. Toutefois, cing ans aprés "article de Godel,
une question se pose encore : le théoréme de Godel
est-il général ou spécifique a la fagon dont le logicien
a associ€ des nombres entiers aux propositions ? S7il
n’est pas général, la réponse négative qu’il apporte au
probleme de la décision est peut-étre spécifique i la
démarche de Gédel.

La généralité du théoreme de Godel dépend de la
facon dont on définit la notion de calculabilité. En
effet, pour coder sous forme arithmétique les propo-
sitions et les algorithmes de démonstration de son sys-
teme formel, Godel a défini une classe de fonctions
susceptible d’opérer cette mise en rapport. Mais cette
classe de fonctions arithmétiques, dites «calculables »

I'es ullamls gsmllls se I'Elll:llllll‘ﬂlll puisqu’elles opérent dans le cadre strict de I'arith-

«Grace a certains travaux qui ont suivi cet article [sur Iincom-  métique finitiste, est-elle circonscrite de fagon adé-
plétude de I'axiomatique formelle], en particulier ceuxde A. M. Turing, ~quate ? Godel a congu une fagon de définir ces
nous disposons désormais d’une définition sire, précise et adé- fonctions, mais s’agit-il de la facon ? Bref, est-on
quate du concept de systéme formel [...] dont la propriété est  sir que le résultat négatif de Gédel n’est pas seule-
qu'en son sein, et en principe, le raisonnement peut étre entiére- ment I’effet d’un codage arithmétique particulier des
ment remplacé par des régles mécaniques. » propositions, 1ié & une restriction trop étroite de la

Kurt Godel, note du 28 aodt 1963  classe des fonctions calculables employées ? Mais
ajoutée a son article de 1931.  alors, qu’est-ce qu’une fonction calculable ?
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n 1931, Kurt Godel (en médaillon) publia un

article intitulé Sur les propositions formelle-

ment indécidables des Principia Mathema-

tica et des systémes formels apparente
(voir la premiére page ci-contre) qui mit & mal le pro-
jet de Hilbert de construire une axiomatique formelle
dont toutes les mathématiques seraient déduites. Il
montra qu'il existerait toujours, dans une telle axio-
matique, au moins une proposition vraie non démon-
trable. Pour arriver & son résultat, il utilisa un procédé
puissant et subtil: il partit de l'axiomatique formelle
de l'arithmétique de Peano et associa a chaque objet
de cette axiomatique (nombre, proposition, formule,
etc.) un et un seul nombre entier. Ainsi, il utilisa le
formalisme bien connu de l'arithmétique de Peano,
mais dans un contexte ot les nombres ont une autre
signification, pour étudier la consistance. ... de larith-
métique de Peano.

La thése de Church-Turing

La notion de calculabilité releve d'une défi-
nition et non d’une démonstration. Or une
définition possede toujours un aspect arbi-
traire ; ainsi, pour s’assurer la pleine
généralité du théoréme de Godel, on
doit s’entendre sur la définition de
la calculabilité. Cest précisément 14
que se situe I'intervention de Turing,
ainsi que celle de deux mathéma-
ticiens-logiciens américains, Alonzo
Church (1903-1995) et son éleve
Stephen Kleene (1909-1994).

Par des approches tres diffé-
rentes, tous trois montrent que les
différentes formulations avec les-
quelles ils définissent les fonctions cal-
culables dessinent le méme périmétre
pour le domaine de la calculabilité. Ste-
phen Kleene propose alors cette conjecture,
qu’il appelle «thése de Church-Turing » :
une fonction est dite calculable si elle peut s”ex-
primer dans une des formes proposées par Church ou
par Turing. I1 sagitd’une conjecture parce qu’elle porte
sur le pouvoir expressif des définitions de la calculabi-
lité : elle propose une équivalence entre ces définitions

Muhammad Ibn Musa Al-Khuwarizmi (environ 783-850),
sur une gravure sur bois réalisée par un artiste Ouzbek
en 1983 a partir d'un manuscrit persan. Al-Khuwarizmi
mit en évidence Il'algorithme en tant qu’objet
mathématique a part entiére. Il écrivit en outre I'un des
premiers traités d'algébre - terme arabe signifiant
«réduction » que I'Europe a conservé tel quel.
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De l'arithmeétique pour étudier I'arithmétique

Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme I°).
Von Kurt Godel in Wien.

1.

Dic Entwicklung der Mathematik in der Richtung zu gréberer
Exaktheit hat bekanntlich dazu gefithrt, dab weite Gebiete von ihr
formalisiert wurden, in der Art, dab das Beweisen nach einigen
wenigen mechanischen Regeln vollzogen werden kann. Die umfas-
sendsten derzeit aufgestellten formalen Systeme sind das System der
Principia Mathematica (PM)?) einerseits, das Zermelo-Fraenkel-
sche (von J.v. Nenmann weiter ausgebildete) Axiomensystem der
Mengenlehre?) andererseits, Diese beiden Systeme sind so weit, dafl
alle heute in der Mathematik angewendeten Beweismethoden in ihnen
formalisiert, d. h. auf einige wenige Axiome und Schlubregeln zuriick-
gefithrt sind. Es liegt daher die Vermutung nahe, dab diese Axiome
und Schlubregeln dazu ausreichen, alle mathematischen Fragen, die
gich in den betreffenden Systemen fberhaupt formal ausdriicken
lassen, auch zu entscheiden, Im folgenden wird gezeigt, dab dies
nicht der Fall ist, sondern dab es in den beiden angefihrien
Systemen sogar relativ einfache Probleme aus der Theorie der ge-
wohnlichen ganzen Zahlen gibt¢), die sich aus den Axiomen nicht

et ce que I'on admet intuitivement comme relevant du
calcul. Il n’y a donc pas de preuve envisa-
geable de cette these. mais seulement de
bonnes raisons informelles de parier
qu’elle est adéquate pour englober
tout le domaine du calcul.
Cette conjecture appliquée i
la démarche de Godel dans ses
travaux de 1931 donne un résul-
tat clair: tout formalisme fini-
% tiste de type hilbertien encode
% la méme classe de fonctions.
Ce résultat, par la stabilité qu’il
manifeste malgré la diversité
des voies qui y ménent, ren-
- force le théoreme de Godel et
=¥ - luiassure lapleine généralité qui
& lui faisait encore défaut.
Ainsi est-ce a['occasion du pro-
« bleme de la décision que Turing pro-
$ pose sa définition de la calculabilité. Il
s'agit donc 1a d'une simple application
du cadre général qu’il concoit pour clarifier la
notion de calculabilité, comme le souligne le titre de
son article de 1936 Théorie des nombres calculables, sui-
vie d'une application au probléme de la décision.

Parmi les approches de la notion générale de cal-
culabilité, celle de Turing est la plus convaincante, au
dire de Godel lui-méme, parce qu’elle lui parait étre la
plus proche de I'intuition que I"on se fait de la notion
de calcul tout en restant indépendante de tout forma-
lisme particulier. C’est ce qui fait d’ailleurs que la
méthode de Turing n’est pas seulement une démons-
tration de logique mathématique au sens strict du terme,
comme nous allons le voir.
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ans son article On computable numbers with an appli-
cation to the Entscheidungsproblem, Turing cherche,
a I'instar de nombre de mathématiciens et de logi-
ciens, a résoudre le probléme de la décision. Au lieu
de se placer d’emblée dans le cadre de la logique
mathématique et d’expliciter directement la notion
de démonstration pour elle-méme, comme 1" aurait
fait un Hilbert, Turing reformule la notion en termes
de nombres calculables. L'expression « nombre cal-
culable » peut surprendre: que peut étre un nombre
sinon une entité calculable ? Mais il ne faut pas oublier
qu’avec les techniques mises au point par Gédel, les
nombres servent a coder des propositions dans un sys-
teme formel (voir page 70). Or comme celui-ci a mon-
tré qu'il existe des propositions codées par des nombres
qui ne sont pas démontrables, les nombres qui les
codent sont non-calculables. C’est sur le terrain des
nombres codant les propositions de I'axiomatique
formelle que travaille Turing.

Il commence par proposer une définition de la
calculabilité : cette définition est nécessaire pour pré-
ciser quels sont les nombres qui appartiennent ou appar-

tiendront au domaine du calculable. L'approche de
Turing est tout a fait originale : il compare un étre humain
en train de calculer (que Turing appelle aussi un «cal-
culateur» — computer) et une machine a calculer:
«Nous pouvons comparer un étre humain en train de
calculer un nombre réel 2 une machine susceptible
d’avoir seulement un nombre fini d’états. »

Sa comparaison est en fait une identification pure
et simple : un nombre est dit calculable si la liste
explicite d’instructions nécessaire a son calcul peut
étre intégralement déléguée a une machine. Qu’est-
ce que Turing entend par « machine » ? La machine
qu’il décrit n’est en rien une machine matérielle. Il
n’a pensé a aucune machine en particulier pour en
construire le plan, si ce n’est peut-étre au principe de
défilement des images d’un film dans un projecteur
de cinéma. Cette machine, appelée aujourd’hui
«machine de Turing» ou «automate abstrait », est,
comme il I'écrit lui-méme, une machine «de papier»
décrivant de fagon rigoureuse comment on passe d'une
suite de symboles écrits & une autre suite selon un ordre
réglé d’avance.

La machine de Turing

En 1936, les logiciens savent que I'on ne pourra jamais, dans un systéme formel,
décider si une proposition est vraie ou fausse, mais ne 'ont pas démontre.
Un jeune inconnu résout le probleme a l'aide d’une curieuse machine de papier.

Etat de la machine

Liste des instructions

Une machine de Turing posséde un nombre fini d'états
internes. Ici, la machine est dans I'état 13. Elle modifie
cet état en fonction d'une liste finie d'instructions et de
ce qu'elle lit sur les cases d’un ruban. Elle change aussi
éventuellement les chiffres inscrits sur les cases du
ruban. Ainsi, la machine dans I'état 12 et qui lit le
chiffre 1 sur la case du ruban passe a I'état 13, change
le 1 en 0 sur la case du ruban et se déplace d'une case
ad gauche en suivant l'instruction (12, 1 => 13, 0
gauche), avant d'attaquer l'instruction suivante.

Ruban infini
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Il s’agit d’une machine mathématique permet-
tant la manipulation réglée de signes. En cela, elle se
distingue des machines matérielles. Au premier abord,
d’ailleurs, contrairement aux machines usuelles qui
regorgent de cablage, de roues et de pieces dont la
fonction nous échappe, la machine de Turing estd’une
description si abstraite et si simple qu’on doute qu’elle
parvienne a effectuer non seulement un calcul, mais
plus encore tous les calculs et, par ce biais, toute
inférence dans un systeme formel. C’est en tout cas
la premiére réaction de Max Newman, le professeur
de topologie de Turing a Cambridge qui regoit le
manuscrit dactylographié des mains de son étudiant
en avril 1936. Max Newman se convainc cependant
de la justesse de I'analyse de Turing et reconnait que
le jeune homme, alors agé de 24 ans, a non seule-
ment résolu 1'un des problemes de logique mathé-
matique les plus ardus de I’époque, mais proposé
une définition si générale de ce qu’il faut entendre par
calcul que le probleme de la décision n’en est plus
qu’une application particuliere.

Une machine de Turing n’est donc pas une machine
au sens courant du terme : ¢’ est plutot une «boite noire »
dont on ne précise pas le fonctionnement matériel et
qui n’a ni force motrice ni énergie électrique. Il s agit
d’une machine algorithmique qui opére une transfor-
mation de symboles fournis en entrée en symboles
lisibles en sortie, au moyen d’une succession d’états
discrets qui sont tous définissables a I'avance. Cette
succession d’états définit les étapes de I'algorithme que
la machine exécute, ¢’est-a-dire ce que nous appelons
aujourdhui, depuis |'article de 1936, un programme.
Ainsi la machine consiste en la mise en rapport algo-
rithmique de deux ensembles : d’une part un ensemble
de symboles d’entrée et d"autre part un ensemble d’états
de sortie. Il est possible, a partir de ce schéma mini-
mal, de fournir une description du mécanisme régis-
sant les états de la machine.

De la machine au calcul

Une machine de Turing possede une capacité de
stockage externe qui se présente sous la forme d’un
ruban de longueur indéfinie, divisé en cases sur les-
quelles sont portés des symboles. La machine est dotée
d’une téte de lecture-écriture capable d'observer le
contenu des cases du ruban, de se déplacer le long du
ruban dans un sens ou dans un autre et de s’arréter
sur une case. Toutes les actions sont régies par une
table d'instructions qui indique quelle action entre-
prendre — écriture ou mouvement. L’ observation d’une
case (sa lecture) entraine soit I'effacement de son
contenu, soit I'écriture de celui-ci. A chaque pas de
temps. la téte de lecture-écriture observe une case et
une seule. Le couple formé par I'état interne de la
machine & un moment f et la case observée définit
une configuration de la machine. La table d’instruc-
tions prescrit ainsi un comportement pour chaque confi-
guration dans laquelle la machine peut se trouver. La
machine effectue alors ce qui est prescrit par la table
et produit un résultat. Ce mécanisme suffir a décrire
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ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO
THE ENTSCHEIDUNGSPROBLEM

By A. M. TurinG.
[Received 28 May, 1936.—Read 12 November, 1936.]

The ““computable”” numbers may be described briefly as the real
numbers whose expressions as a decimal are calculable by finite means.
Although the subject of this paper is ostensibly the computable numbers,
it is almost equally easy to define and investigate computable functions
of an integral variable or a real or computable variable, computable
predicates, and so forth. The fundamental problems involved are,
however, the same in each case, and T have chosen the computable numbers
for explicit treatment as involving the least cumbrous technique. I hope
shortly to give an account of the relations of the computable numbers,
functions, and so forth to one another. This will include a development
of the theory of functions of a real variable expressed in terms of com-
putable numbers. According to my definition, a number is computable
if its decimal can be written down by a machine.

In §§9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be
regarded as computable. In particular, I show that certain large classes
of numbers are computable. They include, for instance, the real parts of
all algebraic numbers, the real parts of the zeros of the Bessel functions,
the numbers m, ¢, etc. The computable numbers do not, however, include
all definable numbers, and an example is given of a definable number
which is not computable.

Although the class of computable numbers is so great, and in many
ways similar to the class of real numbers, it is nevertheless enumerable.
In § 8 I examine certain arguments which would seem to prove the contrary.
By the correct application of one of these arguments, conclusions are
reached which are superficially similar to those of Godelf., These results

t Godel, «“{ber formal unentscheidbare Sitze der Principia Mathematica und ver-
wandter Syst , 1", Monatshefte Math. Phys., 38 (1931), 173-198.

La premiére page de I'article de 1936 de Turing
On computable numbers with an application to the
Entscheidungsproblem.

la transformation qui affecte les symboles d’entrée
pour en faire des symboles de sortie.

On peut alors représenter la machine de Turing sous
la forme suivante:

Téte de lecture-écriture

LT TR TE

Ruban

Quelle que soit la tiche remplie par la machine, on
peut toujours interpréter sa table d’instructions comme
représentant le calcul d’une fonction d’entiers a valeurs
entiéres. Une fonction est alors dite Turing-calculable
quand ses valeurs peuvent étre calculées par une machine
de Turing. Ainsi, grice au formalisme de la machine
de Turing, la découverte d'un algorithme pour la réso-
lution d’une classe donnée de problémes est équivalente
a celle d’ une machine de Turing spécifique capable de
fournir, dans un temps fini, la ou les solutions alaclasse
de problemes en question. 11 suffit alors d’inventer le




programme correspondant a I'algorithme pour que la
machine exécute I"algorithme toutes les fois ou cela
est nécessaire.

Prenons pour exemple de calcul «minimal » celui
donné par Turing dans le paragraphe 3 de son article On
Computable Numbers. .. : la machine mise en place
calcule la suite indéfinie 0101010101... Au départ, le
ruban est vierge. La machine proposée par Turing
pour calculer cette suite possede quatre états possibles
b, ¢, e, f, et la table d"instructions est la suivante :

(6tal b, case vide) implique (6tat ¢, Inscription 0, Droite)
(6tat ¢, case vide) implique (état e, Droite)
(&tat e, case vide) implique (état £ Inscription 1, Droite)
(&tat £, case vide) implique (&lal b, Droite)

ol «Inscription x» signifie «Inscription de x dans la
case » et oll « Droite » signifie «déplacement d'une case
vers la droite ». La premiére ligne d"instructions signi-
fie par exemple : lorsque la machine est dans I'état b
etlorsque la téte de lecture lit une case vide sur le ruban,
alors la machine passe dans I’état ¢, inscrit 0 dans la
case et se déplace d’une case vers la droite. En suivant
ces instructions, la machine imprime la suite 01010101. ..
sur le ruban, en séparant chaque symbole par une case
vide (pour plus de clarté):

Direction du mouvement

—_—
I T

Le calcul de la suite continue indéfiniment puisque
le ruban est vide. Ainsi, un calcul d'une longueur
indéfinie peut étre engendré par un programme
fini d’instructions (en I'occurrence, un programme
de quatre lignes). Ce «raccourci» manifeste deux
traits capitaux de la notion de calcul par machine
de Turing. Premierement, il apparait clairement —
et de facon plus intuitive que dans le cas de I'algo-
rithme — que I"aspect déterminé d’un calcul ne dépend
en rien de sa longueur. Deuxiémement, il devient
aussi beaucoup plus intuitif que des configura-
tions mises au point pour effectuer des parties pure-
ment répétitives des instructions puissent resservir
dans d’autres contextes. En d’autres termes, ces par-
ties répétitives n’ont pas besoin d’étre effectuées i
nouveau : il suffit de reprendre les parties d une table
d’instructions ol ces parties répétitives ont été rédi-
gées sous forme d'instruction.

La machine universelle

Turing introduit un «raccourci» supplémentaire,
d’importance considérable pour la théorie du cal-
cul: la machine universelle. Jusqu'a présent. il a
montré dans son article de 1936 comment un pro-
gramme exécutable par une machine de Turing est
I'image d’un algorithme. Toutefois, chaque calcul
nouveau exige une nouvelle table d’instructions : le
calculateur humain, selon I"algorithme qu’il veut

meltre en pratique, construit telle ou telle machine
de Turing. D un point de vue psychologique, le
calculateur utilise toujours le méme ressort pour
effectuer cette correspondance : pour tel algorithme,
utiliser telle table d’instructions. La correspondance
entre un algorithme et une table d’instructions fait
donc I'objet d"une procédure générale. Cette pro-
cédure générale de mise en correspondance ne pour-
rait-elle pas étre elle-méme opérée par une machine ?
En effet, on peut concevoir des machines de Turing
dites «universelles » ayant la particularité d’effec-
tuer n'importe quel algorithme, si leur table d’ins-
tructions est capable de recevoir et d’exécuter les
instructions de n'importe quelle table d’instructions :
«Il est possible d’inventer une machine unique qui
peut étre utilisée pour calculer n'importe quelle suite
calculable. Si cette machine U est munie d un
ruban au début duquel est inscrite la description stan-
dard d’une machine a calculer M, alors U calculera
la méme suite que M. »

De méme qu’un calculateur humain est capable
de s’adapter aux différents calculs qu’il doit exé-
cuter (une addition par ci, une multiplication par la)
— ou atout autre algorithme selon les différents pro-
blemes qu’il rencontre —, la machine universelle
calcule, selon les instructions qui lui sont confiées,
ce que différentes machines de Turing peuvent
calculer. L'universalité de ces machines de Turing
provient donc de leur universelle capacité i rester
fideles aux instructions des machines qu’elles imi-
tent. Les machines universelles revétent un intérét
considérable pour qui tente de déterminer le champ
du calculable, dans la mesure ot elles réduisent tout
calcul a la construction de la table d’instructions
d’une seule machine. Grice a4 une machine univer-
selle, les tables d’instructions des autres machines
sont effectuables sur une seule machine.

Le raccourci opéré par une machine univer-
selle se situe a une autre échelle que celui effectué
par une simple machine de Turing. Le concept de
machine universelle implique un usage méthodique
général de la réutilisation de toute instruction, quelle
qu’elle soit. En d’autres termes, il est possible, par
le biais d"une machine universelle, de combiner en
une table d’instructions de plus en plus complexe
des tables d’instructions effectuant des calculs
plus simples : il suffit pour cela de réduire tout cal-
cul & n’étre qu'une partie d'un calcul plus vaste.
Ainsi, non seulement chaque calcul de longueur
arbitraire est fini par définition, mais ['infinité des
calculs elle-méme est virtuellement contenue dans
une seule machine. Turing fait ici un formidable
raccourci de ce qu’il faul entendre par calcul :
dans un premier temps. il congoit une machine
qui, a partir d’un algorithme construit pour un pro-
bleme, résout tous les probléemes du méme type (une
machine de Turing élaborée pour effectuer une addi-
tion sait résoudre toutes les additions) ; dans un
second temps, il construit une machine qui, non seu-
lement résout ce type de problémes, mais tous les
calculs de toutes les machines de Turing.
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Et le probleme
de la décision?

Muni de son puissant concept de machine, Turing
montre, i titre d’application, que le probleme de la
décision tel qu’il a été posé par Hilbert est inso-
luble. Pour comprendre sa démonstration, préci-
sons d’abord ce probleme : Hilbert recherchait un
moyen de décider, dans un systeme formel contenant
I’arithmétique, si toute proposition est vraie ou fausse.
Ce faisant, il espérait que toute proposition vraie était
démontrable. Or Gédel a montré I'incomplétude de
I'axiomatique formelle, ¢’est-a-dire qu’au moins une
proposition vraie restera toujours non démontrable.
La démontrabilité ne peut donc plus étre le critére
pour décider si une proposition est vraie ou fausse.
Néanmoins, ne serait-il pas possible de distinguer les
propositions démontrables des propositions non
démontrables au sein du systéme formel. les propo-
sitions démontrables devant étre le résultat d’un algo-
rithme ? Les propositions déductibles des axiomes
étant en nombre potentiellement infini, on ne peut
les examiner toutes les unes apres les autres, car
certaines sont encore & venir, et ¢’est ce qui rend le
probleme difficile. Car s’il n’y avait qu’a examiner
les propositions démontrées et non pas aussi les
démontrables, il suffirait de posséder une bonne défi-
nition de la notion de démonstration pour opérer cette
distinction.

On sait qu’une proposition démontrable est relice
aux axiomes par un chemin de longueur finie (sinon
la proposition n’est pas démontrable). Y aurait-il
moyen de tester la longueur du chemin allant des pro-
positions aux axiomes avec la seule chose a dispo-
sition, le nombre entier servant de code a la
proposition?

Dans ce nombre serait inscrite, sous forme
arithmétique, la propriété d'étre démontrable. Par
exemple, si toute proposition démontrable avait pour
code un nombre multiple de deux, alors il suffirait
d’un algorithme trés simple examinant si le nombre
inspecté est divisible par deux pour savoir a l'avance
si la proposition est démontrable.

Il faudrait donc disposer d'une procédure de
calcul qui, pour toute proposition du systéme formel,
déciderait si une proposition est ou non démontrable
en vérifiant la présence ou I'absence de la propriété
arithmétique de démontrabilité dans le nombre qui
la code. Une telle procédure de calcul serait évi-
demment un algorithme qui, pour chaque nombre
entier codant une proposition, détecterait si ce nombre
posséde ou non la propriété arithmétique codant la
propriété «é&tre démontrable ». Ce procédé permet-
trait de ranger la proposition dans la catégorie des
propositions démontrables par simple inspection de
son code numérique.

L'exécution d’un tel algorithme de décision
reviendrait ainsi au calcul d’une fonction sur des
nombres entiers (formant la liste des codes des
propositions du systeéme formel) dont toutes les
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n 1936, quelques

jours avant que

Turing ne remette son

manuscrita Newman,

Alonzo Church etson
éléve Stephen Kleene publient leur
définition de la calculabilité : le \-
calcul. Selon les deux logiciens
ameéricains, toutes les fonctions
intuitivement calculables peuvent
élre exprimées en h-calcul. Cette
proposition, nommée thése de
Church, n'est pas démontrable, car
Ja notion de «intuitivement calcu-
lable » n'est pas formalisée. Néan-
moins, la méthode de Church rend
possible la constitution de la théo-
rie mathématique la plus efficace
pour rendre compte de ce que
'onentend par «calculable ». Le -
calcul est un formalisme fondé sur
la seule notion de fonction: tout
élément de ce langage est une fonc-
tion & un argument (I'argument
étant lui-méme une fonction a un
argument, etc.). Pour cela, une
fonction est écrite, dans ce for-
malisme, al'aide d’un\-opérateur,
quila transforme en son action sur
son argument, ce dernier étant
complétement indépendant de cette
définition. Considérons par exemple
la fonctionf quiax associe2x, alors
Af est le concept abstrait de « dou-
bler», que 'on peut appliquer a
n'importe quel argument, et sur
lequel on peut faire des déclara-
tions formelles. Le h-calcul permet
de construire pas a pas toutes les
fonctions calculables, des nombres
naturels aux suites récurrentes et
séries entiéres, en passant par les
valeurs booléennes VRAI et FAUX.
De fagon plus générale, le \-cal-
cul de Church permet de forma-
liser toute entité mathématique,
linguistique et, a fortiori, infor-
matique, en une succession d'ins-
tructions qui combinent variables,
applications de consignes et

e lambda-calcul d'Alonzo Church

appliquer la consigne 1
a "quelque chose"

rechercher
guelque chose

L les nombres Y
|\ qui vérifient la propriété
e (consigne 1) <

étre multiple de 4
(consigne 2)

résultats de \.-calculs précédents.
Prenons par exemple la phrase
mathématique « Rechercher I'en-
semble fx; 3n € N (X = 4n)}».
Cette phrase s écrit aussi « Recher-
cher les nombres qui vérifient la
propriété “étre un multiple de 4 "».
Enh-calcul, elle devient le schéma
d’instructions ci-dessous, qui
signifie: 1) utiliser la A-fonction
«rechercher quelque chose », et
2) remplacer l'argument « quelque
chose » par la consigne «les
nombres qui vérifient la propriété ».
Nous avons ainsi obtenu une nou-
velle A-fonction: « rechercher les
nombres qui vérifient la propriété » ;
3) remplacer I'argument «pro-
priété » de cette nouvelle x-fonc-
tion par la consigne «étre multiple
de 4» (qui est elle-méme la fonc-
tion « étre multiple d’un nombre »,
appliquée a l'argument «4 », lui-
méme défini par une fonction du
A-calcul).

Le h-calcul deviendra plus tard le
fondement de plusieurs langages
de programmation, dont le LISP
(List Processing Language) et /e
SML (Standard Meta Language).




Le probleme de [arr

Btoulef

a machine de Turing peut
continuer indéfiniment des
calculs, comme le calcul des
chiffres aprés la virgule quand
ceux-ci sonten nombre infini
(par exemple quand il y a un « reste »
inéliminable dans le calcul d'une
division). Que signifie « s'arréter »
pour une machine de Turing ? S'arré-
ter parce qu’elle est parvenue au
bout de son calcul, par exemple,
lorsque le reste d’une division est
nul et qu’elle en produit donc le résul-
tat ? Ou s'arréter parce que Ia transi-
tion entre deux étapes du programme
aété mal rédigée et que le programme,
ne pouvant pas traiter la donnée a
'étape ou il se trouve, s'arréte faute
d'instruction adéquate ?
Le « probléme de l'arrét » consiste a
se demander s'il est possible de dis-
tinguer a priori ces deux cas. Si cette
distinction pouvait étre faite, on pour-
raitalors circonscrire intégralement la
classe des programmes qui ne s'ar-
rétent pas pour des raisons de faute
décriture, ¢'est-a-dire des programmes
écrits dans une langue parfaite. Ces
programmes seraient détermi-
nistes : /ls ne laisseraient aucune place
au hasard entre leurs étapes.

Arrét

et déterminisme

Pour répondre a cette question du
point de vue mécanique, il faudrait
posséder un programme qui repé-
rerait les erreurs d’écriture causant
l'arrét intempestif de tout programme
au cours de son exécution (ce qu’au-
Jjourd’hui nous appelons familiére-
ment un « bogue »). La question
posée par le probléme de I'arrét
revient donc a celle-ci: un programme
peut-il décider a I'avance, si un pro-
gramme quelconque s arréte ou pas ?
Si tel était le cas, il serait en quelque
sorte possible de trouver un résultat
avant méme qu'il ne soit effective-
ment obtenu. Cependant, le type de

antome dans la machine

«raccourci» que la machine de Turing
rend possible ne permet pas d’obte-
nir un résultat semblable.

Pour se faire une premiére idée de
cette impossibilité, supposons qu'un
tel programme « décisionnel » appelé
A (pour «arrét ») existe et qu'au seul
vu des programmes et des entrées
qui lui sont soumis, il décide a
l'avance siles programmes en ques-
tion s'arréteront ou pas. Le pro-
gramme A examinerait le calcul
exécuté par un programme B, puis
afficherait son résultat (« B s'arré-
tera » ou « B ne s'arrétera pas ») et
s'arréterait. Toutefois, en pratique,
on voit que si le calcul de B ne s’ar-
réte pas, A ne peut décider si le pro-
grammeB, pour telle entrée, est mal
congu et entre dans une « boucle »
indéfinie ou s'il poursuit seulement
son calcul indéfiniment ; dés lors,
A ne pourra pas décider, & un moment
particulier du temps, si B s‘arrétera
ou pas... 4 moins de se projeter a
la fin des temps, ce qui est impos-
sible mécaniquement.

Démonstration

par I'absurde

Il est possible de retrouver ce résul-
tat sans passer par une projection
temporelle, en employant un rai-
sonnement logique sur le compor-
tement supposé du programme «
décisionnel » a I'égard de lui-méme.
Pour ce faire, montrons que I'on peut
« mal concevoir » intentionnellement
un programme et que ce défaut de
conception, inhérent a la notion d'ar-
rét, est indétectable au moyen d'un
programme. En effet, puisqu'on sup-
pose qu'il existe un programme «
décisionnel », on doit pouvoir déci-
der, comme pour tout programme,
s'il s‘arréte ou pas ; dans le cas pré-
sent, cette décision reléve de lui-
méme puisqu'il est le programme
décisionnel. Voyons a quoi peut
conduire ce cas de figure.

Supposons que 'on classe tous les
programmes dans une liste en leur
associant un nombre. En outre, sup-
posons qu’un programme décision-
nel A existe dans cette liste et
construisons-en une variante qui,
au lieu de s’arréter comme A une
fois le résultat affiché, adopte le com-
portement suivant : le programme
A(p, /) ne s'arréte pas si le nombre
p décrit un programme qui s arréte
pour une entrée i et le programme
A'(p, i) sarréte si le nombre p décrit
un programme qui ne s'arréte pas
pour une entrée i.

Maintenant, penchons-nous sur le
comportement du programme A’ lui-
méme : le programme A'porte le
numéro a' de la liste des pro-
grammes. Considérons le pro-
gramme A'appliqué a lui-méme,
c'est-a-dire le programme A'(a’, a').
Dans quelle catégorie le ranger ?
S‘arréte-t-il ou pas ? Refaisons le
méme raisonnement que précé-
demment : le programme A'(a’, a)
s'arréte sile nombrea’ décrit un pro-
gramme (en l'occurrence A') qui ne
s’arréte pas pour l'entrée a'. En
d’autres termes, le programme
A'(a’, a) s‘arréte si le programme

| A'ne s‘arréte pas. Par conséquent, le

programme A’ est contradictoire.

Le fantome

o

de I'arrét

Ainsi, il existe au moins un cas pour
lequel un programme A', construit
sur le modéle du programme A dont
on supposait la validité universelle,
conduit a une contradiction. Le pro-
gramme décisionnel A n'existe donc
pas. Quant a la notion d'arrét, elle
méne une existence fantomatique :
il est impossible de la ranger dans
la catégorie « défaut d’écriture
(bogue) » ou dans la catégorie
« poursuite du calcul ». Il n'y a pas
de déterminisme absolu dans I'écri-
ture des programmes.
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Laplace et Jupiter .

our les partisans du déterminisme en phy-

sique classique, les événements futurs

sont prédictibles : méme si des perturbations

sont présentes dans le systéme physique,
celles-ci conservent le méme ordre de grandeur et
interviennent peu surl'évolution du systéme, 4 quelque
moment que ce soit. Le déterministe Pierre-Simon
Laplace (1749-1827) pensait ainsi que le systéme
jovien constitué de Jupiter et des quatre satellites décou-
verts par Galilée en 1610 était prédictible, car, expli-
qua-t-il dans sa Théorie des satellites de Jupiter, /a
théorie (lois du mouvement et lois de la gravitation
universelle) «a non seulement expliqué la cause des
inégalités que les observations ont fait connaitre, mais
elle a développé les lois de toutes les inégalités qui,
en se combinant entre elles, offraient aux astro-
nomes des résultats trop compliqués pour qu'ils
aient pu déméler les inégalités simples dont ils
étaient formés. Elle a banni tout empirisme des
Tables des satellites de Jupiter, et celles [de] M. de
Lambre étant fondées sur la théorie de la pesanteur
universelle, elles ont 'avantage de s'étendre a tous
les temps, en rectifiant les données que I'observation
seule peut déterminer».

Portrait de famille composite de Jupiter el de ses quaire
principales Lunes, de haut en bas lo, Europa, Ganyméde
el Callisto. Les images de Jupiter, lo et Ganyméde furent
prises en 1996 par Ia sonde Galiléo, celle de Callisio

en 1979 par la sonde Voyager 1.

valeurs seraient calculables puisqu’elle devrait
pouvoir déterminer, dans tous les cas, si le code de
telle ou telle proposition contient ou non la pro-
priété arithmétique exprimant sa prouvabilité. Par
conséquent, le probleme de la calculabilité de cette
fonction, et donc celui de la détermination de 1’al-
gorithme correspondant, est capital dans le cadre du
«programme » de Hilbert: il est la voie d’acces 4 la
détermination du domaine général du démontrable.
Or le résultat auquel Turing parvient est dévastateur:
cet algorithme n’existe pas.

Le résultat négatif de Turing

Voyons les grandes lignes du raisonnement de Turing
sur le lien déductif entre axiomes et propositions.
Pour qu’une proposition soit démontrable, la «lon-
gueur » du chemin qui la relie aux axiomes doit
étre finie, c’est-a-dire doit étre de nature algorith-
mique. Peut-on savoir si une proposition quelconque
est le résultat d’un algorithme ? Cette question équi-
vaut a la suivante : sachant que I'on peut faire une
liste des propositions produites exactement par algo-
rithme (les propositions déja démontrées), est-on siir
de pouvoir classer toutes les propositions produites
par algorithme — méme celles qui seront produites —,
dans cette liste ?

© Les génies de la science - Turing

Laréponse de Turing estnon : il exhibe un probleme
qui ne peut pas étre résolu algorithmiquement. La liste
elle-méme, si elle vise I'exhaustivité, a di étre pro-
duite par un algorithme: a quel niveau dans cette liste
ouverte placer I"algorithme qui produit la liste ? Cette
place ne peut pas étre définie sans I'aide de la liste en
train d'étre construite, et un cercle vicieux se met en
place. Il existe donc au moins un algorithme qui n’est
pas contenu dans la liste, qui est pourtant censée les
contenir tous. Par conséquent, il n’existe pas d’algo-
rithme de vérification de I"appartenance des algorithmes
ala liste de tous les algorithmes : il n’est donc pas pos-
sible de vérifier par un algorithme unique la longueur
finie de tous les liens entre propositions et axiomes. Il
faut répondre par la négative au probleme de la déci-
sion: il n’existe aucun moyen algorithmique de déter-
miner si une proposition est démontrable ou non.




Pour appuyer ce raisonnement, Turing exhibe un
probléme dans le cadre de sa machine, le « probleme
de I'arrét». Ce probléme a intuitivement une forme
calculatoire et, pourtant, ne re¢oit pas de solution en
termes de machine de Turing. Il s*énonce de la fagon
suivante: y a-t-il moyen de prévoir a l'avance si une
machine de Turing va s’arréter ou non, c¢’est-a-dire
si le calcul en train d’étre exécuté sera mené ou non
a son terme, au seul vu de son programme ? Un tel
moyen signifierait qu'il existerait une machine « déci-
sionnelle » qui connaitrait globalement le comporte-
ment de chaque machine de Turing (c’est-a-dire le
résultat du calcul effectué par la machine : son arrét
ou son absence d’arrét) a partir de son aspect local
(c’est-a-dire & partir de la simple inspection du contenu
de sa table d’instructions). Or une telle machine est
contradictoire et, par conséquent, n’existe pas (voir
I'encadré page 76). Turing
ramene alors le probléme de la
décision au probleme de I'ar-
rét en montrant qu’ils ont la
méme forme.

Nous avons mentionné
I"autre application de la notion
de machine de Turing au
domaine de la logique mathé-
matique (voir page71) : elle
concerne le rapport qu’entre-
tient la machine avec les dif-
férentes définitions de la
calculabilité, en particulier
celle donnée par Church.
Turing montre dans un appendice & son article de 1936,
écrit lors de son séjour a Princeton, que le formalisme
de la machine de Turing et celui du lambda-calcul
de Church ont la méme expressivité. En montrant que
ce que Church appelle la « normalisation des lambda-
termes » et I"arrét d’une machine de Turing aboutis-
sent a laméme notion de résultat d’un calcul, il prouve
du méme coup que le domaine de la calculabilité est
identique dans les deux formalismes, généralisant
ainsi la perspective ouverte par les résultats de Godel.

Calcul et déeterminisme

Dans les années 1930, Turing fait figure d’« outsider»
complet dans le champ de la logique mathématique :
Jusqu’alors, il a travaillé en calcul des probabilités oii
il a trouvé une nouvelle démonstration d’un théoréme
déja prouvé en 1922 — le théoreme de la limite cen-
trale (voir page 49)— et en théorie des groupes oil, en
1935, juste avant de s’intéresser a la logique mathé-
matique, il a complété un résultat de von Neumann,
dont il avait suivi les cours lors d’un séjour de ce der-
nier a Cambridge. Depuis I'adolescence, il s’est tourné
vers les mathématiques appliquées a la chimie et ses
lectures I’ont porté au moins autant vers la physique
que vers les mathématiques: il a, par exemple, lu les
ouvrages de Hilbert et de von Neumann, qui ont tous
deux puissamment contribué a I’avancée des mathé-
matiques et de la physique.

C est en mathématicien
et physicien, autant quen  hende mieux, dés lors, la
logicien, que Turing a
aborde le probléme
ae la calculabilite.

Pourquoi Turing est-il entré si vite dans le champ,
a I’époque peu développé. de la logique mathéma-
tique ? Parce qu’il existe un lien caché qui unit ces
disciplines: le déterminisme sous-jacent aux démarches
classiques en physique et en mathématique. Comme
I’ont montré le physicien F. Bailly et le mathémati-
cien G. Longo, il existe une parenté forte entre le
déterminisme développé en physique dans le cadre
classique (dont la figure emblématique est Laplace)
et le déterminisme mathématique (dont la figure emblé-
matique est Hilbert), pour lequel un systéme d’axiomes
contient virtuellement la totalité de ses théorémes.

Evénement futur dépendant strictement des évé-
nements passés et théoreme dérivant strictement des
axiomes du systeme formel ont donc en commun d’éire
pleinement déterminables. Ce lien déterministe
s'exprime précisément sous l'aspect du calcul. En
d’autres termes, ¢’est /'aspect
algorithmique qui unit mathé-
matique et physique au sein
du paradigme du détermi-
nisme classique. On appré-

synthése qu’opere Turing
entre mathématique et phy-
sique quand il cherche a
décrire avec toute la précision
requise la nature de la notion
de calcul: il souhaite mettre
au jour le fondement déter-
ministe du paradigme clas-
sique, que ce soil en
mathématique ou en physique.

De ce point de vue, on comprend comment il a
pu investir avec autant de facilité et de puissance le
champ réputé tres abstrait de la logique mathéma-
tique : ce n’est pas seulement en logicien qu’il a abordé
la question de la calculabilité posée par Hilbert,
mais autant en mathématicien et en physicien. En
témoigne le « probléme de I"arrét » qu’il brandit
dans son article de 1936 a I'appui de sa démonstra-
tion selon laquelle il n’y a pas d’algorithme qui puisse
résoudre le probleme de la décision: ce probleme
est emblématique du déterminisme classique dans la
mesure ol il porte sur ce qui peut étre déterminé a
['avance.

La réponse négative au probléme de I’arrét
entraine donc aussi I'effondrement du paradigme
déterministe classique : I'analogie si patiemment
construite entre d"une part la physique déterministe,
que I'on peut qualifier de « laplacienne » selon Turing
lui-méme et, d’autre part, I’axiomatique formaliste
ou «hilbertienne », s’en trouve fragilisée puisque
I’axiomatique formaliste hilbertienne ne tient pas
toutes ses promesses. Nous verrons que le travail
ultérieur de Turing consistera a s’interroger sur la
validité de I"autre branche de I’analogie, la physique
déterministe «laplacienne » et sur les rapports que
doivent entretenir physique et mathématique. La
construction matérielle du premier ordinateur est le
résultat de cette réflexion.
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Inf

Entretien avec Giuseppe Longo,
informaticien-théoricien au

formatique, géometrie et de

cnRs. Il travaille au Département |
| part d'une analyse essentiellement

d'Informatique de I'Ecole Nor-
male Supérieure, ot il dirige
I'équipe Complexité et Infor-

mation Morphologique (voir |
http://www.di.ens.fr/~longo/). |
| avec le théoréme d'incomplétude de

Pour la Science . Le titre de voire
équipe de recherche comporte
les deux termes «information »
et « morphologie ». Bien qu’ils

aient une racine commune, la |

forme, tout semble opposer le

registre algébrique de I'informa- |

tion et le registre géométrique de
la morphologie... Comment les
réconciliez-vous en tant que logi-
cien et informaticien ?

Giuseppe Longo: On a des idées
trop arrétées et trop étroites sur la
logique et I'informatique ! Cela vient
de ['histoire de la logique mathéma-

[

erminisme

tique et du questionnement sur le fon-
dement des mathématiques (le pro-
gramme d'Hilbert). Ce questionnement

| algébrique, centrée sur l'arithmétique,

et repousse la géométrie. Aprés une |

période de gestation, la logique mathé-
matique nait véritablement en 1931,

Gadel. A partir de ce moment, on
assiste a une explosion de résultats et
des domaines entiers se constituent:
calculabilité, théorie de la preuve, théo-
rie des modeéles, ete. Dans un second
temps, dans les années 1970, la géo-
métrie a fait un grand retour en théo-
rie de la démonstration, en particulier
grace a la logique linéaire du logicien
frangais Jean-Yves Girard, qui intro-
duit de nouvelles représentations
des preuves ultilisant des graphes.
Ainsi, Ia logique mathématique, par
la diversité de ses approches, a fini
par modifier la notion méme de fon-
dement, et a retrouver, tout récem-

A gauche, les délenseurs du déterminisme prédictil, Pierre-Simon Laplace et
David Hilbert. A draite, les représentants du déterminisme non prédictif, Henri
Poincaré et Kurt Gadel. Au centre, Alan Turing qui, dans ses travaux, fit cohabiter

les deux formes de déterminisme.

ment, une problématique géomé-
trique. ... que la physique n'avait jamais
abandonnée.

C'est ainsi que la logique mathéma-
tique et l'informatique en sont venues
a analyser, elles aussi, les structures
géométriques présentes dans les
formes de la nature. Incontestable-
ment nouveau, ce dialogue entre la
logique et l'informatique d’une part
et les sciences de la nature d'autre
part dépasse la problématique clas-
sique — formaliste et logiciste — des
fondements. En outre, ce processus
s’est imposé par I'évolution interne
de l'informatique: les ordinateurs sont
distribués a la surface du globe et
reliés dans des réseaux. Ils inté-
grent 'espace et le temps physiques,
et forment ainsi des systémes
«concurrents » (qui doivent syn-
chroniser leur calcul), lesquels
demandent aussi une analyse géo-
métrique de leurs processus.

Pour la Science : Dans I'ouvrage que
vous venez de publier avec votre col-
Iégue physicien Francis Bailly, Mathé-
matiques et sciences de lanature, la
singularité physigue du vivant (Her-
mann, Paris, 2006), vous posez un
diagnostic sur I'histoire des mathé-
matiques el de la physique au
xx@ siécle: alors que la physigue se
géométrise, en particulier avec la
relativité einsteinienne et la géo-
méirie des systémes dynamiques de
Poincaré, les recherches sur les fon-
dements des mathématiques s'al-
gébrisent et se détournent de toute
intuition géoméirique. Pouvez-vous
revenir sur cetie situation de divorce
au ceeur des sciences exacies ?

Giuseppe Longo : Un tel divorce
n'existait pas dans la physique et les
mathématiques galiléo-newtoniennes.
Il vient pour I'essentiel du grand bou-
leversement qu’ont introduit 'avéne-
ment des géométries non euclidiennes
et le renouvellement riemannien du

" conceptd'espace. D'un certain coté, le

constat posé par Frege est exact: il y
acomme un «délire » dans les mathé-
matiques de la premiére moitié du
XX siécle, ot I'on propose les nou-

TURING



Déterminisme et imprédictilibité physique

U n pendule simple, c'est-a-dire une masse oscillant au bout d’une corde, est un objet physique détermi-
niste et prédictible. / est mathématiquement déterminé par une équation (qui régit I'angle & qu’il forme
avec la verticale) et par deux parameétres (sa longueur L et sa masse m), dont un déduit la période d’oscilla-
tion. Si I'on néglige la friction pour de petites oscillations (de petits angles ©), I'équation prédit son évolution
pour longtemps (courbe rouge).

Un double pendule, qui consiste en un pendule attaché a un autre, est aussi un objet déterministe: il est
déterminé par deux équations. Cependant il estimprédictible : son mouvement chaotique rend impossible de
prédire la trajectoire (courbe rouge) au-dela d’un trés petit nombre d’oscillations. Une propriété apparait quand
on observe un double pendule physique : méme si on le fait démarrer dans des conditions initiales trés proches,
celui-ei suivra bientot une trajectoire différente. Comme il est physiquement impossible de reproduire exac-
tement les mémes conditions initiales, a cause des fluctuations (thermiques par exemple) ou des perturba-
tions, on n'obtient jamais la méme trajectoire. Le Systéme solaire, ol toutes les planétes sont en interaction
gravitationnelle avec le Soleil mais aussi entre elles, présente les mémes propriétés d'imprédictibilité physique.
Le chaos existe méme dans la «grande horlogerie céleste ». ..

Au contraire, une simulation informatique, ¢'est-a-dire un modeéle calculatoire fonctionnant sur un ordinateur,
machine a états discrets, permet de relancer la simulation exactement sur les mémes valeurs numériques. Le
double pendule simulé numériquement, une fois relancé, suivra exactement la méme trajectoire, ce qui est
un phénoméne physiquement impossible. L'imitation informatique est certes remarquable, mais elle pré-
sente un aspect qui est étranger a la physique des systémes chaotiques : la possibilité de I'itération parfaite.
Le fait est que les ordinateurs digitaux sont avant tout des machines a itérer: l'itération est présente dés les
principes de base de la calculabilité (la récursion primitive) et rend possible I'installation et le fonctionnement

d'un logiciel sur n'importe quelle machine. Sans itération, il n'y aurait pas d'informatique.

velles géométries. Il a fallu corriger | et le deuxiéme sur les fondements | posséde une intuition de physicien
des mathématiques. Poincaré et |

ce «délire» par un retour a l'arithme-
ligue, théorie logique par excellence,

selon Frege, au ceeur de la formalisa-

tion, pour Hilbert. Mais la formalisa-
tion est un mayen, pas une fin!

On assiste donc, au cours du
Xx¢ siécle, a ce fait étrange du point
de vue épistémologique : les cadres
de pensée des mathématiques et de
la physique, qui se fécondent
mutuellement depuis la Renaissance,
continuent a s'emprunter mutuelle-
ment des outils et surtout des prin-
cipes d'intelligibilité, mais la logique
mathématique, c'est-a-dire la pers-
pective sur les fondements des
mathématiques, devient étrangére
a cette fécondation mutuelle. Cela a
conduit a une perte d'intelligibilité,
qu'il faut corriger aujourd’hui par
un dialogue avec la physique et avec
la biologie, sur les fondements
méme de la connaissance.

Pour la Science : Laplace et Hilbert
poussent le déterminisme aussi loin
que possible, le premier en physique

Gddel montrent les limitations
internes de ce paradigme, I'un en
physique et I'autre dans le cadre
du fondement des mathématigues.
Comment situez-vous le parcours de
Turing par rapport aux démarches
de ces quatre savanis ?

Giuseppe Longo : Reprenons un
instant I'analogie. Pour Laplace, la
détermination mathématique
implique la prédictibilité de I'évo-
lution des systémes physiques.
Pour Hilbert, la formalisation en tant
que détermination d'une théorie
mathématique impligue la décida-
bilité des énoncés formalisables.
Poincaré démontre I'imprédictibi-
lité de certains systémes détermi-
nistes, dont le pendule double
physique (voir la figure ci-contre)

et méme le Systéme solaire ! Gadel |

et Turing prouvent l'indécidabilité
de certains systémes formels, eux
aussi trés importants. Dans ce
cadre, Turing, tout en étant logicien,

qui le fait passer d’une branche de
l'analogie & l'autre. Il est dans la
lignée d'Hilbert quand il expose ce
qu'il entend par déterminisme cal-
culatoire, mais il est également dans
celle de Gddel quand il congoit
l'indécidabilité du probléme de I'ar-
rét dans le cadre du « déterminisme
formel » hilbertien. Il se situe dans
la lignée d’un Laplace quand il maté-
rialise une machine déterministe,
l'ordinateur séquentiel (dont I'évo-
lution finie est prédictible, selon ses
propres mots), mais il est tout
autant dans celle de Poincaré quand
il observe que le cerveau n'est pas
une machine laplacienne et que le
vivant, et plus précisément I'évo-
lution physique de ses formes, pose
des problémes d'auto-organisation,
qui doivent étre abordés géomé-
triquement.

En particulier, Turing, dans les tra-
vaux qu'il méne a partir de 1948, se
tourne vers la physique sans faire
référence a la notion d’algorithme,

| qu'il a pourtant contribué a formu-



ler. Il travaille a ce qu'il appelle des |
« systémes continus », par opposi- |
tion a sa « machine a états discrets ».
Il s'agit de systémes dynamiques
non linéaires, dont le matériel se
déforme et qui est sujet a une « derive
exponentielle » (nous dirions aujour-
d’hui «sensible aux conditions ini-
tiales »). Ainsi, en a peine 20 ans, il
réussit a pousser a la limite le déter-
minisme classique, dans le cadre du |
discret, de l'arithmétique formelle,
et a porter son regard scientifique
au-dela, dans les sciences de la
nature, par son analyse des dyna-
miques continues. C'est d’une ori- |
ginalité dont on mesure encore mal |
les conséquences...

Pour la Science : Dans le titre
méme de volre livre, vous insis-
tez sur la «singularité physique
du vivant ». L'itinéraire de Turing,
qui part d’une réflexion sur le cal-
cul et en vient a des problémes |
relevant de Ia bhiologie, vous

parait-il exemplaire de ce point
de vue ?

Giuseppe Longo : Le parcours de
Turing est une source capitale de
réflexion épistémologique, comme
je viens de le dire. Mais Francis
Bailly et moi-méme prenons acte |
des transformations contempo- |
raines des sciences de la nature
pour essayer de voir plus loin. En
particulier, I'auto-organisation du
vivant nécessite de repenser la
notion d'espace et de temps phy-
siques : par conséquent, c'est non
seulement en physicien qu'il faut |
aborder I'espace et le temps de

I'évolution des espéces et de I'on-

togenése, mais aussi par un regard |
propre porté sur les phénoménes

du vivant, avec toutes les difficul-

tés que cela comporte. D’autre part, |
par son étude de la morphoge-
nése, Turing a brillamment ana-
lysé des nombreux phénoménes qui
se présentent a I'interface physique
entre le vivant et son écosystéme, |
et qui sont bien décrits par les théo-
ries physiques courantes. Mais cette
analyse ne suffit pas. Il faut lui ajou- |
ter une théorisation autonome du

biologique, avec ses propres obser-
vables et paramétres. C'est, a mon
sens, I'une des grandes questions
scientifiques du xxi° siécle.

Le temps du vivant, par exemple,
est loin d’étre un épiphénoméne du
mouvement, voire un parametre des
processus, comme dans la plupart
des théories physiques; le temps
biologique accompagne la mise en
place de I'organisation phylogéné-
tigue et ontogénétique. C'est un
« opérateur », tout comme |'éner-
gie est un opérateur en physique
quantique, constitutif des phéno-
ménes (I’énergie est méme I'0b-
servable clé de la mesure
quantique). Le vivant organise son
propre temps, par ses horloges
internes, ses rythmes propres. Le
temps est, pour ainsi dire, l'obser-
vable principal de la biologie. L'in-
trication entre temps et processus
du vivant mérite une théorisation
propre, tout comme la physique
quantique a théorisé la notion de
«champ » comme corrélation entre
espace, temps et énergie.

TURING



e probléme de I'arrét exhibé par Turing dans son
article de 1936 a eu de profondes répercussions sur
la cohérence du déterminisme classique : en démon-
trant que certains calculs ne pouvaient pas étre déter-
minés a |'avance, il déséquilibra I’analogie entre le
déterminisme calculatoire en mathématique et en
physique (voir page 78). Rien d’étonnant, alors, que
Turing se soil ensuite intéressé a la branche phy-
sique de I'analogie. En mathématique, il avait poussé
a I'extréme les limites du déterminisme algorith-
mique en donnant une définition rigoureuse de la
notion de périmétre de calculabilité ; il fit de méme
en physique en imaginant une machine & calcul déter-
ministe, ['ordinateur, dans un monde physique pour-
tant non déterministe au sens classique du terme.
Revenons en 1936. Turing répond par la néga-
tive au probleme de la décision en ouvrant un nou-

veau champ théorique, la théorie de la calculabi-
lité, grice a sa notion de machine. Sa démonstration
est en fait la deuxiéme réponse au probleme de la
décision, car quelques semaines avant sa parution,
le logicien américain Alonzo Church, professeur a
I’Université de Princeton, en a publié une par des
biais complétement différents. Max Newman, le pro-
fesseur de Turing, juge néanmoins la démonstration
de son éléve suffisamment originale pour la pré-
senter a la London Mathematical Society, qui
I'examine le 28 mai 1936 et la publie.

Max Newman incite Turing a poursuivre ses
recherches en compagnie d’Alonzo Church. seul
capable, al'époque, de servird’interlocuteur a Turing.
Ce dernier rejoint donc Church aux Etats-Unis de sep-
tembre 1936 a juillet 1938. Gadel vient de quitter
Princeton quand Turing arrive, mais le Département

De la machine
de Turing a l'ordinateur

Pendant la Seconde Guerre mondiale, Turing décrypte le code secret

de la flotte allemande. Toutefois, les moyens humains et matériels nécessaires

sont considérables. Turing songe alors a matérialiser sa machine universelle.
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de mathématiques, qui accueille de nombreux émi-
grés d’Allemagne et d’Europe centrale, reste un lieu
riche en échanges intellectuels. Pendant son séjour
américain, Turing rédige un Philosophical Docto-
rate (PhD) de logique mathématique sous la direc-
tion d’ Alonzo Church tout en collaborant avec John
von Neumann sur des questions de théorie des
groupes. Alonzo Church mentionne pour la premiére
fois le terme de « machine de Turing » dans son
compte rendu de I"article de Turing qu’il rédige pour
le Journal of Symbolic Logic. Au cours de son séjour,
von Neumann offre & Turing de devenir son assis-
tant a ['Institute for Advanced Studies de Prince-
ton. mais Turing préféere retourner & Cambridge en
Angleterre, dont I'ambiance intellectuelle et les rela-
tions sociales, plus libertaires que celles de Prince-
ton, lui conviennent mieux.

Contourner
le théoreme de Godel ?

Dans son PhD, Turing s’interroge sur les rapports
entre sa théorie de la calculabilité et les conséquences
du théoréme de Godel de 1931 en théorie de la preuve.
Le théoréeme d’incomplétude de 1931 montre que
tout systéme formel est incomplet, au sens oil sa
propre consistance ne peut étre démontrée dans le
systéme. Toutefois, il prouve aussi qu'il est possible
d’enrichir n’importe quel systeme formel par un
nouvel axiome qui inclut la consistance du sys-
téme originel.

Appliquant les idées sur la calculabilité effec-
tive qu’il a développées dans son article de 1936,
Turing construit alors une hiérarchie potentielle-
ment infinie de systémes formels, indexée sur les
nombres et en étudie les propriétés, Il explique ainsi
sa démarche dans un article intitulé Systems of Logic
based on Ordinals, publié en 1939 sur le sujet:

Le but que visait introduction des logiques ordi-
nales était d’éviter autant que possible les effets
du théoréme de Gidel. Convenablement interpré-
tée, une de ses conséquences revient a ce qu'il soit
impossible de construire |...| un systeme logique
complet. Nous sommes parvenus, quoi qu'il en
soit, a construire, pour un systeme donné, un sys-
teme plus complet en y ajoutant comme axiomes des
[formules qui, intuitivement, apparaissent comme
correctes, mais dont le théoréme de Gadel montre
qu'elles sont indémontrables dans le systeme ori-
ginel ; nous avons construit, a partir de la, un sys-
teme plus complet par une répétition du processus,
et ainsi de suite.

On reconnait la le style particulier de Turing,
consistant a repousser a I'extréme les limites de la

Le logicien américain Alonzo Church (1903-1995,

a gauche) et le mathématicien américain d'origine
hongroise John von Neumann (1903-1957, a droite).
Ci-contre, la tour Cleveland de I'Université de
Princeton, sur une aquarelle de David Liao (2006).
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construction mécanisable. Grice a cette hiérar-
chie, Turing cherche non seulement a contourner
le théoreme de Godel, mais & montrer comment le
concept d’indécidabilité peut lui-méme étre relati-
visé: au lieu d’y voir un absolu indépassable, il en
fait un concept relatif a chaque systeme logique de
la hiérarchie.

Dans le méme article de 1939, Turing fait un
paralléle entre la partie des mathématiques qui ne
peut pas étre formalisée (d'apres le théoréme de
Godel) et Iintuition. 11 distingue deux facultés de
la pensée mathématique, qu’il dénomme «intuition »
et «ingéniosité ». La premiére, de nature non construc-
tive, c’est-a-dire qui ne peut pas étre cernée par un




raisonnement ayant un nombre fini d’étapes, n’a
pas de contrepartie formelle, contrairement a la
seconde, de par sa nature constructive. Godel a démon-
tré qu’il n’est pas possible de supprimer I"intuition
(sinon tout systeme formel contenant I’arithmé-
tique serait complet); Turing cherche donc a savoir
ce qui se produit quand on réduit son réle autant
que possible, tout en augmentant indéfiniment celui
de I'ingéniosité:

Le raisonnement mathématique peut étre consi-
déré de fagon schématique comme ['exercice d’une
combinaison de facultés que nous pouvons appeler
Uintuition et l'ingéniosité. L' activité de ['intuition
consiste a produire des jugements spontanés qui ne
sont pas le résultat de chaines conscientes de rai-
sonnement. |...]. L'exercice de I'ingéniosité en mathé-
matique consiste a aider ['intuition par des
arrangements adéquats de propositions et peul-
étre par des figures géométriques ou des dessins.
Dans les temps pré-gideliens, certains pensaient
que |...] la nécessité d'un recours a l'intuition pour-
rait étre entierement éliminée. |...] Nous avons

essayé de voir jusqu'oit il était possible d’éliminer
intuition. Nous ne nous préoccupons pas de savoir

quelle quantité d’ingéniosité est requise et nous
faisons donc 'hypothése qu’elle est disponible en
quantité illimitée.

Ce point de vue était déja celui de I'article de

page 73)d’une longueur indéfinie jouait le méme
role que celui de 1'ingéniosité, dont la quantité
est, elle aussi, indéfinie. L'intuition, bien que
de nature non mécanique, peut étre assimilée
a une machine, que Turing appelle « machine
a oracle ». Cette machine est susceptible de
prendre immédiatement des décisions pour des
problémes qu’une machine de Turing «nor-
male », ¢’est-a-dire ayant a produire effective-
ment un calcul, ne peut résoudre, comme le

1936: le ruban de la machine de Turing (voir

probleme de I'arrét (la machine A du probléme de
I"arrét, qui prédit si toute machine de Turing va s’ar-
réter ou non, est une machine a oracle, voir page 78).
Il est alors possible de comparer, pour des pro-
blémes ouverts et des programmes en construction,
le nombre de pas de calcul qui seraient nécessaires i
leur achevement et le nombre de fois ot la machine
a oracle doit intervenir pour que le programme
aboutisse. On peut alors classer les probléemes selon
leur degré de complexité : plus la machine a oracle
intervient, plus le programme est complexe.

Cette recherche initiée par Turing ne prendra son
essor qu'a la fin des années 1960, avec la théorie
de la complexité algorithmique.

Premieres machines
a calculer

La théorie de la calculabilité par machine de Turing
trouve un autre domaine d’application: la crypto-
logie. Dés 1937, Turing s’intéresse de pres a la science
du codage et du décodage des messages secrets: il
s’est rendu compte qu'une méthode de décryptage
est un algorithme qui pourrait étre exécuté par
machine de Turing. Ainsi, dés cette époque, il cherche
amécaniser la cryptologie. Cette recherche I'améne
as’interroger sur la construction effective de machines
a crypter et leur rapport aux machines a calculer
— bien réelles cette fois, et pas seulement sur leur
structure logique, comme dans son article de 1936.

La tradition des machines a calculer est
ancienne : elle remonte au vaste mouvement de
grammaltisation de 1'dge classique. En 1641, Pas-
cal inventa une machine a calculer effectuant des
additions et des soustractions, suivi de Leibniz et
bien d’autres apres eux. Plus prés de Turing, le
mathématicien et ingénieur Charles Babbage (1791-
1871) passa sa vie a construire, sans succes, sa
machine a différences, ou machine analytique,
qui nous apparait aujourd’hui comme un ordina-
teur mécanique (voir la figure ci-contre).

Turing connait I'ceuvre de Babbage et ses
recherches se placent dans cette filiation anglaise.
Contrairement & Babbage cependant, Turing se rend
compte que les opérations arithmétiques ordinaires
peuvent étre traduites dans le cadre de la logique
booléenne (voir I'encadré page ci-contre): or il est
possible, depuis peu, d’exprimer les opérations de
cette logique sous forme de circuits électriques nom-
més circuits booléens. Grice au soutien d’un étu-
diant en physique qui lui ouvre I'atelier des physiciens
au mépris des regles en vigueur a Princeton, Turing

La machine a différences construite en 1991 par deux
ingénieurs anglais, Barrie Holloway (a gauche) et
Reg Crick (a droite), d’aprés les plans concus par
Charles Babbage (1791-1871, en médaillon)

au xix® siécle. La construction de ce calculateur
mécanique automatique fit rétrospectivement

de ce mathématicien un pionnier de I'informatique.
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La logique booléenne

U X siécle, le logicien bri-

tannique George Boole

(1815-1864, en médaillon)

remarqual'analogie formelle
qui existait entre les conjonctions
logiques «et» et «ou», et les opé-
rations arithmétiques élémentaires
+ et x de l'algébre. Développant
cette analogie, il créa un systéme
algébrique a deux valeurs numerigues
(0 et 1) transposable a la logique: il
suffisait pour cela d'associer aux deux
valeurs 0 et 1 les valeurs «vrai» et
«faux» de la logique classique. Le
systéme formel ainsi construit par
Boole est connu sous le nom d'al-
gébre binaire, car les opérations sont
limitées aux nombres 0 et 1. En uti-
lisant des variables & la place du sujet

des expressions logiques, l'algebre
de Boole libéra ces derniéres des
ambiguités du langage courant.
L'algébre logique ainsi construite par
Boole lui permet de formaliser les
raisonnements fenus en langage cou-
rant et d’obtenir ainsi plus rapide-
ment les résultats. Il utilise pour cela
des tables de vérité telle celle repreé-
sentée en haut de la page 66, qui
récapitulent, pour les relations
logiques étudiées, toutes les situa-
tions de vérité possibles a partir de
plusieurs propositions successi-
vement vraies ou fausses.

En 1937, Turing, qui cherche un
moyen de construire effectivement
sa machine de papier, s'inspire de
I'analogie entre opérations arith-

métiques élémentaires
etconjonctions logiques

a l'origine de la logique
booléenne. Il sait en outre

que, depuis peu, des phy-
siciens tels que l'ingénieur
ameéricain George Stibitz des
Laboratoires Bell ont réussi a effec-
tuer des opérations booléennes
(addition, soustraction booléennes)
a l'aide de circuits électroniques,
nommés aujourd'hui circuits boo-
léens. Son idée est, déja, de trans-
former tout programme de la
machine de Turing en une succes-
sion de calculs binaires effectuables
par des circuits boolgens, principe
toujours a la base de I'informa-
tigue moderne.

construit son propre multiplicateur électrique boo-
léen. qui finit par fonctionner.

Saréussite professionnelle n’estompe cependant
pas le mal de vivre qui le mine depuis la mort de
Christopher Morcom. Turing traverse une phase de
dépression qui I’améne a écrire 4 un de ses amis en
Angleterre qu’il a songé a se suicider avec un
mécanisme incluant une pomme et du fil élec-
trique. Le jeune homme dépasse cette crise et revient
en Angleterre en juillet 1938, rapportant avec lui son
multiplicateur électrique. La guerre donne alors tout
son poids a ce qui n’est encore qu'un intérét privé
pour la cryptologie et les calculs effectifs, et inflé-
chit les recherches de Turing vers 1'aspect phy-
sique du déterminisme algorithmique.

Enigma

A son retour des Etats-Unis, Turing est recruté, ainsi
qu’une soixantaine d’autres personnes, par le Ser-
vice britannique du chiffre, le GC&CS (Govern-
ment Code and Cypher School), sans doute par le
réseau des anciens de son college de Cambridge,
King's College. Confronté a I'expansionnisme nazi,
le gouvernement britannique s’est lancé avec retard
dans I'écoute aussi systématique que possible des
émissions radio de I'armée allemande. des ser-
vices de sécurité et des Schurzstaffel (les SS). Les
méthodes employées par les Britanniques datent
de la Premiére Guerre mondiale et ne donnent rien
face & 1a machine & crypter les messages utilisée par
les Allemands, Enigma.

Enigma est a1 origine le nom d’une machine de
cryptage/décryptage inventée en 1919 par I'ingé-
nieur hollandais Hugo Alexander. Ses plans furent
immédiatement repris par I"ingénieur allemand Arthur
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Scherbius qui en fit un modele commercial pré-
senté au public en 1923. Dans les années 1930, les
services secrets anglais et allemands améliorérent
chacun de leur c¢6té ce modéle commercial, les pre-
miers nommant leur nouvelle machine Typex et les
seconds conservant le nom latin Enigma (100000
exemplaires en furent construits pendant la Seconde
Guerre mondiale).

L’ Enigma a usage commercial ressemble & une
machine i écrire, mais il s’ agit d’une machine méca-
nique et électrique : elle est disposée dans une caisse
de bois et pése une douzaine de kilos. Le cryptage
est basé sur la permutation des lettres a travers un
réseau €lectrique ; il est transmis par un clavier
marqué des lettres de I'alphabet et servant de connec-
teur. La permutation est congue de telle sorte qu’une
lettre est encodée différemment chaque fois qu’on
appuie sur le clavier. Cet encryptage évolutif est réa-
lisé de la facon suivante : le réseau électrique de la
machine est composé de 3 rotors (plus un rotor
«réflecteur ») dont chacun possede 26 positions mar-
quées par des encoches correspondant aux lettres
de I’alphabet. Lorsqu’une lettre est tapée, le premier
rotor avance d’un cran: le rotor suivant se meut a
son tour d’un cran quand le premier rotor a fait un
tour complet, et le troisieme rotor procede de
méme vis-a-vis du deuxieme. Les 26 lettres sont
fixées dans I'ordre alphabétique sur chaque rotor,
par un anneau que 1'on peut faire tourner manuel-
lement, donc aléatoirement ; cet anneau fait appa-
raitre une lettre de 1’alphabet par une fenétre (voir
I'encadré page 86).

Par rapport a ce modele commercial, la com-
plexification du modele de I'armée allemande porte
sur deux points: I'ajout de rotors supplémentaires
et celui d’un tableau de connexions qui permute deux
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orsqu’en 1932, les jeunes mathé-

maticiens polonais Marian

Rejewski, Jerzy Rozycki et Hen-

ryk Zygalski intégrent le Bureau

du chiffre polonais pour décryp-
ter la machine Enigma perfectionnée
par les Allemands, le Bureau ne dispose
que d'une maigre documentation alle-
mande fournie par le Service de rensei-
gnements frangais. Cette documentation
donne des informations sur la structure
générale de la machine et sur les procé-
dures d’'emploi; elle comporte aussi des
tableaux de clés permettant aux opéra-
teurs de mettre la machine «a la clé »
(arrangement des trois rotors, position
de base des rotors, arrangement des six
cdbles du tableau de connexions). Avec
cette documentation, I'équipe polonaise
comprend mieux le fonctionnement de la
machine:

— les trois rotors sont arrangés dans
un ordre connu de I'opérateur et du des-
tinataire (six possibilités) pour une période
de temps donnée (trois mois jusqu’a fin
1935, tous les mois jusqu'a septembre
1936 et tous les jours a partir d’octabre
1936),

— les trois rotors doivent étre initia-
lisés dans une position de base donnée
pour le chiffrement d’une clé de trois
lettres choisie par l'opérateur, cette clé
servant a chiffrer effectivement le mes-
sage; en outre, cette clé de message est
répétée et chiffrée deux fois en téte du
cryptogramme pour détecter les éven-
tuelles erreurs de transmission ;

— le tableau de connexions est utilisé
avec six cables, ce qui permet la substi-
tution réciproque de 12 lettres.

La mise a la clé consistait a brancher

les six cdbles du tableau

de connexions, a placer
les trois rotors dans
I'ordre secret indiqué
surle tableau de clé et
a placer les trois
rotors selon la posi-
tion de base. Pour
chiffrer, I'opérateur
choisitau hasard les
trois lettres d’une clé
de message (par
exemple QWE) qu'il
saisit deux fois (QWE-
QWE). Il note le résul-
tat chiffré (par exemple

¥y

Ies Polonais

WTRBAZ) et repositionne les trois rotors
surQWE ; il frappe ensuite le texte du mes-
sage et note le résultat du chiffrement (par
exemple JOZNXPSU...), il transmet alors
la séquence WTRBAZ JOZNXPSU... En
réception, I'opérateur ayant préalablement
mis la machine a la clé, déchiffre WTR-
BAZ, ce qui lui donne QWEQWE (/a
machine est réversible). Il initialise ensuite
les trois rotors avec QWE et saisit le
chiffré JOZNXPSU... ce qui lui redonne le
texte clair.

Rejewski comprend vite que le dou-
blement de la clé de message est une
faiblesse qu'il faut exploiter. Il se rend
compte que la clé de message chiffrée
deux fois posséde la propriété suivante:
si on note k,, ky, k, les trois lettres de la
clé de message en clair, Cy,..., Cg les six
lettres résultat du chiffrement de la clé de
message répétée, et D, le déchiffrement
de la substitution de la i-éme lettre réa-
lisée par la machine, alors on a le sys-
téme (S):

D,(c,) = D,(c,) =K,
(S) D,(C,) = Ds(Cs) =k,
D,(c5) = Dg(cq) = kg
Le systéeme (S) prend tout son inté-
rét lorsque les D, résultent de I'action du
seul rotor de droite (les deux autres rotors
restant fixes). Cela est vrai dans 21 cas
sur 26, c'est-a-dire quand la position de
départ du rotor de droite est a plus de
cingq lettres de I'ergot d’activation du rotor
central. Dans ce cas, les deux autres rotors
restent fixes. D'autres équations ont éga-
lement pu étre écrites qui, jointes a I'ob-
servation des clés de messages chiffrées,
ont permis a Rejewski de calculer le
cablage du rotor de droite.

Grace aux permutations réguliéres des
rotors et aux nombreux messages inter-
ceptés, Rejewski reconstitue le cablage
des trois rotors : en décembre 1932, moins
de quatre mois aprés ses débuts sur la
machine, Enigma est entiérement recons-
tituée. Dés février 1933, la fabrication des
répliques dEnigma commence, 15 en juin
1933 et jusqu’a 70 en aodt 1939. Les
répligues Enigma disponibles, il reste a
retrouver réguliérement les clés. Rejewski
remarque que de nombreux messages du
méme jour (méme configuration de la
machine) font apparaitre des chaines
cycliques dans le chiffrement des clés
de message. Par exemple, avec les clés
de message chiffrées ci-aprés :

SCHEMA DE PRINCIPE DE LA MACHINE ENIGMA

REFLECTEUR ROTOR  ROTOR  ROTOR \
DE GAUCHE CENTRAL DE DROITE

~ 000000 ®O00O -

VOYANTS

Fonctionnement de |'Enigma. Aprés avoir mis
la machine a la clé, I'opérateur frappe le texte
clair lettre par lettre sur le clavier. Chaque letire,
fraduite par un courant sur un circuit électrique,
subit une premiére substitution par le tableau
de connexions. Le signal est ensuile transmis au
rotor de droite (qui avance d’'une position, soit
1/26° de tour), puis au rolor central (qui avance
d'une position aprés les 26 déplacements du rolor
de droite), enfin au rofor de gauche (qui tourne
d'une position aprés les 26 déplacements du rolor
central); I'ensemble des irois rolors réalise ainsi
3 autres substitutions, variables a chaque letire
selon leur progression. Le signal est ensuite trans-
mis au réflecteur qui le réinjecte sur une autre
broche du rotor de gauche, puis ceniral et enfin
de droite réalisant encore 3 substitutions, inverses
des 3 substitutions précédentes. Pour finir, le
signal est réinjecté dans le lableau de connexions
et allume un voyant désignant une des 26 letires
de I'alphabet, résultat du chiffrement qui doit étre
noté par I'opérateur avant de chiffrer les letires
suivantes du message.

message 1: WTRBAZ, message 4:
BOSWAO [remarquez le cycle WB, BW
noté (WB)]

message 2: FOCPIT, message 5:
PYXFDE [remarquez le cycle FP, PF noté
(FP)]

message 3: AMWXUP, message 6:
XNDTUQ, message 7: TWMARQO [remar-
quez le cycle AX, XT, TA noté (AXT)]

La chaine <(WB),(FP),(AXT)> cor-
respond a la premiére lettre de la clé de
message. Rejewski démontre que la struc-
ture de ces chaines, observables sur les
trois lettres de la clé de message, est uni-




quement fonction de I'arrangement des
trois rotors et de la position de base, soit
6x 26° = 105 546 possibilités. L'ensemble
de I'équipe, grdce a leurs répliques Enigma,
essaye les 105 546 arrangements et posi-
tions de départ possibles et note dans un
catalogue toutes les chaines cycliques
associées. Ce travail dure un an et le
catalogue permet, jusqu’en 1939, envi-
ron 100000 décryptages. L 'histoire se com-
plique lorsque, en décembre 1938, les
Allemands mettent en service deux nou-
veaux rotors...
D'aprés A. Cattieuw et P. Hébrard, De
la mécanique a l'ordinateur, Dossier
Pour la Science La cryptographie, n°36,
pp. 18-25, 2002.

lettres avant et apres les rotors. Pour crypter ou
décrypter un message, il fallait donc connaitre
trois choses : les permutations a réaliser manuelle-
ment sur le tableau des permutations, I'encoche de
départ propre a chaque rotor, et la lettre a faire appa-
raitre sur I’anneau de chaque rotor. Ces trois infor-
mations étaient distribuées a toutes les unités sous
la forme d’un carnet mensuel de codes qui devait
étre consulté quotidiennement pour adapter Enigma
au code du jour.

En outre, afin d’éviter tout décryptage par un
tiers, vu la grande quantité de messages envoyés avec
le méme code, I'armée allemande utilisait une clé
particuliere pour chaque message, qui consistait &
définir le réglage de I'anneau sur chaque rotor:
I'armée réglait sa machine selon le code du jour, y
compris I'anneau de chaque rotor, puis choisissait
au hasard une nouvelle position de ces anneaux,
qu’elle cryptait selon le code du jour. Pour éviter
les risques d’erreur dus aux interférences radio,
elle envoyait cette position deux fois de facon consé-
cutive en début de message ; la machine encryptant
toujours une lettre différemment de la fois précé-
dente, la clé, composée d’autant de lettres que de
rotors, était transmise sous la forme de deux codes
différents (voir 'encadré ci-contre). Le nombre de
permutations possibles se comptant en milliards, le
haut commandement allemand était persuadé que sa
machine était inviolable et I'utilisa massivement jus-
qu’en automne 1941.

L'exploit de Rejewski

Enigma fut adoptée par I’armée allemande dés 1929.
A partir de ce moment, les services de renseigne-
ments des grandes puissances ne décrypterent plus
aucun message allemand et la machine acquit une
réputation d’inviolabilité. Pourtant, une équipe des
services de renseignements en Europe ne désarma
pas : I'équipe polonaise. Dés 1932, les Polonais pri-
rent conscience du danger potentiel que représen-
tait pour eux la montée du nazisme en Allemagne,
puis son arrivée au pouvoir en 1933. Forts d’une
brillante tradition logico-mathématique — celle des
logiciens et philosophes Jan Lukasiewicz (1878-
1956), Stanislaw LeSniewski (1886-1939) et Alfred
Tarski (1902-1983) —, les Polonais constituérent
une équipe de cryptologie composée d’une vingtaine
de mathématiciens germanophones spécialistes des
permutations en théorie des groupes. et d'ingé-
nieurs capables de construire des machines a décryp-
ter. Le contre-espionnage francais ayant obtenu les
manuels d’utilisation d’Enigma et les ayant fait
passer aux Polonais faute de pouvoir en tirer profit,
ceux-ci construisirent une Enigma militaire a partir
d’une Enigma commerciale, en reconstituant en
particulier le cablage des fils électriques sur les rotors
et le réflecteur. A I'aide de cette réplique de I’ Enigma
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militaire, un jeune mathématicien de 27 ans, Marian
Rejewski divisa le probléme du décryptage en
deux : celui du brouillage effectué par le tableau de

La machine Enigma ulilisée par I'armée allemande
pendant la Seconde Guerre mondiale
pour crypter ses messages.
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Une des 121 Bombes construites entre 1943 et 1945 par I'US Navy pour décrypter massivement les messages
codés avec la nouvelle version d'Enigma utilisée par les Allemands a partir de 1940.

permutations et celui du brouillage effectué par les
rotors. Dans les deux cas, aprés un travail acharné,
il cassa le code d’Enigma.

Dans le cas du brouillage effectué par le tableau
de permutations — le plus simple —, la méthode
consiste a découvrir, dans le désordre que présen-
tent les lettres une fois «décodées » au niveau des
rotors, un bout de « mot » possédant seulement
quelques lettres permutées (en effet, certaines lettres
sont inchangées par le tableau de connexion car il
ne compte que six cibles, donc six permutations pos-
sibles de douze lettres). Ces lettres donnent un apergu
de la configuration partielle de la connexion opé-
rée manuellement dans le tableau de connexion.
Rejewski recomposa ainsi les connexions journa-
licres du tableau.

Dans le cas beaucoup plus complexe du brouillage
effectué par les trois rotors, une méme lettre du mes-
sage en clair se trouve cryptée par deux lettres dif-
férentes séparées par trois crans de rotor: en effet,
la cl€ de chaque message, constituée de trois lettres,
estrépétée deux fois, formant les six premiéres lettres
du message. Il devient alors possible, avec un nombre
suffisant de messages, d’établir un lien entre les
lettres en clair et les lettres cryptées. Sachant que les
lettres en clair ne sont jamais cryptées par elles-
mémes (un A n’est jamais crypté par un A), Rejewski
eut I'idée de suivre le cycle de réapparition d’une

Polish Philosophy Page

Quatre logiciens qui marquérent les mathématiques
polonaises : de haut en bas et de gauche a droite,
Jan Lukasiewicz (1878-1956), Stanisfaw Lesniewski
(1886-1939), Alfred Tarski (1902-1983) et Marian
Rejewski (1905-1980). Ce dernier décrypta le code
de la machine Enigma utilisée par les Allemands
jusqu’en 1938.
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lettre en se basant sur le cycle de permutations qu’elle
subit dans un message, cycle inhérent au fonction-
nement de la machine Enigma: par exemple, le cycle
de A qui se transforme en D, puis en B, puis en L,
puis de nouveau en A. Ce cycle des lettres est plus
ou moins long, mais on peut toujours le suivre, car
il correspond a la disposition des crans des rotors,
indépendamment du brouillage ultérieur effectué par
le tableau de permutations. En dressant pendant un
an le tableau général de ces cycles, Rejewski entre
en possession de tous les cycles utilisés par Enigma
et donc de toutes les positions possibles des crans
des rotors.

Toutefois, a partir du 15 septembre 1938, le
cran de départ assigné a chaque rotor fut laissé a la
discrétion de I'encodeur, qui devait donc commu-
niquer son choix en début de message: le réper-
toire mis au point par Rejewski devint inutilisable.
Rejewski trouva néanmoins une nouvelle méthode
consistant a découvrir si, dans la clé du message
répétée deux fois, une méme lettre ne se retrouvait
pas a trois crans de rotors successifs; si c’était le
cas, la lettre était appelée, sans raison apparente,
« femelle » (en polonais «samiczka»), et indiquait
une position relative des crans des rotors les uns
par rapport aux autres. Par exemple, si I'on pos-
séde suffisamment de messages cryptés, il peut se
produire qu’un jour donné, trois clés auront I'appa-
rence suivante : WAH WIK : RAW KTW : DWJ MWR,
ol le W se répete, indiquant par la I"ordre relatif
des rotors par rapport aux autres.

En comparant de nombreux messages, Rejewski
mit au jour un stock de lettres femelles et. a partir
de novembre 1938, a I'aide de machines appelées
Bombes, il retrouva la position exacte des crans des
rotors : afin d’accélérer la recherche, il monta en
série six Bombes, chacune étant une réplique
d’Enigma configurée avec un arrangement pos-
sible des trois rotors, et détermina alors les positions
des crans des rotors qui produisaient les lettres
dites « femelles ». Ainsi, ce fut a I'occasion d une
recherche centrée sur ces doublons « femelles »
que la mécanisation du renseignement entra dans
son ere moderne.

Jusqu'en décembre 1938, le systeme mécanisé
mis au point par Rejewski fonctionna, mais 1"addi-
tion par les Allemands de deux rotors supplémen-

Jack Harper
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taires rendit alors son travail partiellement obsolete,
vu le nombre de Bombes a sa disposition. Le 24 juillet
1939, Les Polonais convoquerent Frangais et Bri-
tanniques a une réunion secrete a Varsovie au sujet
d’Enigma. lls dévoilerent a leurs alliés stupéfaits
leur succes et leur donnerent deux répliques de
['Enigma militaire ainsi que les plans des Bombes
permettant le décodage mécanisé, tout en leur annon-
cant qu’ils n’avaient pas les moyens matériels de
décrypter la nouvelle version d”Enigma. Les Alliés
transférérent le matériel polonais par la valise diplo-
matique. Cing semaines plus tard, le 1 septembre
1939, I'armée allemande envahissait la Pologne,
déclenchant la Seconde Guerre mondiale.

Les probabilites
du brouillage

Le 3 septembre 1939, soit le lendemain du jour ol
la Grande-Bretagne et la France déclarent la guerre
a I’ Allemagne, Turing prend son poste au Service
du chiffre britannique, qui a déménagé dans de
nouveaux locaux a I’extérieur de Londres, au manoir
de Bletchley Park. de peur d’essuyer les bombarde-
ments de I'aviation allemande. Au début de la guerre,
200 personnes y cohabitent (ils seront 7000 & la fin).
Turing est le responsable de la « hutte n® 8 », un
préfabriqué de bois dans lequel quatre personnes
(dont Turing) sont chargées du déchiffrement de
I’ Enigma navale, celle qui code les messages envoyés
a la marine allemande. Turing reste assigné i cette
tiche jusqu’au voyage secret qu'il effectue aux Etats-
Unis pour le compte du service du chiffre, du
7 novembre 1942 au 31 mars 1943.

La «Hutte n° 8 » du Service du chiffre britannique a Bletchley Park,
dont Turing était responsable pendant la guerre (ci-dessous).
A gauche, la maison de Bletchley Park ot habitait Turing.




Des femmes travaillant au décryptement d’Enigma
dans une hutte de Bletchley Park.

Il s’agit de mettre au plus vite en pratique les
méthodes et les machines congues par les Polonais,
mais sur une grande échelle, le GC&CS disposant

Lanalyse séquentielle

Pendant la Seconde Guerre mondiale, les statisticiens A. Wald et
(.ABarnard ontindépendamment mis au point une méthode pour ana-
lyser la qualité de biens manufacturés, dont voici le principe. Pour
décider si un lot de piéces est de bonne qualité ou pas sans avoir a
passer en revue toutes les piéces, ce qui reviendrait trop cher, on opére
un test ol I'on distingue deux hypothéses : I'une H(lot de piéces défec-
tueuses) et I'autre non-H (lot de piéces non défectueuses) et I'on
cherche a choisir entre les deux hypothéses. On teste toutes les piéces
une par une et on recalcule a chaque fois la qualité du lot, sans fixer
a I'avance la taille de I'échantillon soumis au test de qualité. Aprés
chaque observation, trois actions sont possibles: agir comme si H
était vraie; agir comme si non-H était vraie; ordonner un autre test.
| s'agit de continuer a faire le test jusqu'a un seuil qui optimise le
nombre de tests. La difficulté consiste a définir une régle d'arrét pour
le test de qualité. On voit qu'il s'agit I d'un probléme analogue a
celui de la décision.

Turing utilisera une méthode semblable pour coupler les problémes
de brouillage d’Enigma dus aux rotors et au tableau de connexions.
La sélection d’'un ensemble de biens dont on suppose qgu'ils ont la
méme qualité peut étre assimilée a I'acceptation d'une hypothése sur
la signification d'un mot dans un message crypté.

de plus de moyens. Pendant la durée de la «drdle
de guerre » (3 septembre 1939-10 mai 1940), cette
stratégie fonctionne et les messages allemands sont
souvent lus au jour le jour, ce qui permet de connaitre
les positions des unités de I’armée allemande et leurs
plans d’attaque, jusqu’a I"opération de Narvik en
Norvege (avril 1940). L'opération est un échec
allié (en partie dd a la trés mauvaise qualité du ren-
seignement naval britannique, jaloux de son indé-
pendance par rapport au Service du chiffre), mais
elle permet au moins de récupérer sur un patrouilleur
allemand une Enigma militaire, malheureusement
sans son carnet de code, détruit par négligence
pendant I"abordage.

Ainsi, la premiere stratégie du Service du chiffre
britannique consiste a multiplier les Bombes et a uti-
liser une Bombe par lettre a décoder dans un mot.
Par exemple, pour un mot de 7 lettres, on utilise
7 Bombes (chacune représentée par 3 nombres de
1 4 26 se référant aux crans des trois rotors). Cela
accélere d’autant le repérage de la position des crans
des rotors, mais ne régle pas la question du brouillage
effectué par le tableau de connexions, avant et
apres le passage a travers le ciblage des rotors. Turing
concoit alors de nouvelles stratégies qui, contraire-
ment & celles de Rejewski, font appel au calcul des
probabilités, sa spécialité mathématique d’origine.
Ce choix est guidé par deux raisons.
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Tout d’abord, Turing considére trop risqué de
se baser exclusivement sur la répétition du codage
en début de message pour effectuer le décryptage.
Si, comme il est a terme probable, les Allemands
changent leur systeme, il n’y aura plus aucune
méthode pour décrypter les messages. Il faut donc
trouver une autre stratégie, indépendante de la répé-
tition du code en début de message. Turing invente
une méthode de décodage qui se fonde sur I'étude
des mots probables (appelés cribs) et laisse de coté
la clé répétée. Il remarque en effet qu’il est pos-
sible de tirer parti de la probabilité d’existence d un
mot dans un message : par exemple, le Service du
chiffre a noté que toutes les unités de I'armée
allemande recgoivent par radio le matin, a partir de
6 heures, un bulletin météo chiffré par Enigma. dans
lequel le vocabulaire allemand de la météorologie
est évidemment employé.

Turing développe alors un calcul reposant sur
la notion de «poids d’évidence», qu'il applique a
la probabilité d’un mot. L'unité de mesure de ce
«poids d’évidence », dénommée ban (divisible en
«déciban », sur le modele des décibels) par Turing,
en référence aux feuilles cartonnées de la ville de
Banbury sur lesquelles il fait ses calculs, lui permet
d’effectuer un calcul de probabilités sur I’ordre des
rotors. A la méme époque, pour résoudre des pro-
blemes physiques de transmission du signal, le mathé-
maticien américain Claude Shannon définit la notion
d’information comme un événement possible parmi
un ensemble d’événements, en distinguant, lui aussi,
des événements plus ou moins probables. C’est le
début de la théorie de I'information, dont Turing
apparait, avec le recul, comme I'un des pionniers.

La seconde raison de son choix est que les pro-
babilités lui permettent d’articuler le probléme du
brouillage effectué par les rotors et celui du brouillage
effectué par le tableau de connexions en distinguant,
contrairement a Rejewski, le brouillage par le tableau
de connexions avant et aprés le brouillage effectué
par les rotors. Rejewski a traité de fagcon assez
intuitive le probleme du brouillage effectué par le
tableau de connexions en tentant de repérer des bouts
de mots en sortie, dans |I’espoir de trouver des indices
sur la fagon dont deux lettres ont été appariées. Turing
découvre qu’il existe un moyen de coupler les deux
problémes de brouillage, sans pour autant les
confondre. Le type de recherche entrepris par Turing
s appelle, en statistique, '"analyse séquentielle. On
crédite de son invention le statisticien américain
A. Wald et le statisticien britannique G. A. Bar-
nard, qui a fait, comme Turing, un Ph. D. de logique
sous la directiond’A. Church a Princeton. Tous deux
ont, pendant la guerre, développé indépendamment
une méthode analogue pour faire des tests de qua-
lité sur des biens manufacturés (voir I'encadré
page ci-contre); la sélection d"un ensemble de biens
manufacturés de méme qualité pose le méme type
de problémes que celle d’un mot probable. La encore,
Turing fait figure de pionnier. Venons-en aux
méthodes qu’il met en place.
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La solution de Turing

La méthode de Turing consiste en trois points. Pour
augmenter la vitesse de traitement, Turing traite indé-
pendamment chaque lettre par une Bombe dont le
ciblage estrelié i la Bombe suivante, qui traite la lettre
suivante, etc. Ainsi, la concaténation des Bombes imite
le mot entier tout en permettant d’essayer les posi-
tions des crans des rotors de [’ Enigma sur chaque lettre
en méme temps : en bout de traitement, toutes les
Bombes ont donc le méme ordre de cran de rotor, sauf
le dernier qui exprime une lettre particuliere, et elles
étalent alors le mot dans I’espace, et non de fagon
séquentielle comme le ferait une Enigma.

En outre, Turing lance la recherche mécanisée tout
en sachant que cette recherche ne peut pas donner le
mot puisqu’il y aura un nouveau brouillage apres celui
effectué par les rotors: celui dii au tableau de connexions.
Cette recherche indéfinie est donc interrompue a un
moment donné, et Turing compare alors les lettres du
mot probable et celles qui sont cryptées.

Enfin, Turing remarque que certaines configura-
tions sont impossibles. En effet, selon larégle de réci-
procité dans le codage par le tableau de connexions,
une lettre et une seule peut étre codée par une autre :
par exemple, si une lettre A est codée par P au
moyen du brouillage du tableau de connexions, la
méme lettre P ailleurs dans le texte codé ne peut étre
codée que par A. Bref, il doit y avoir symétrie entre
la lettre codante et la lettre probable et quand ce
n’est pas le cas, des milliards de configurations sont
éliminées d’un seul coup. La recherche de connexions
contradictoires peut dés lors étre mécanisée : un pre-
mier prototype de la Bombe de Turing commence 2
fonctionner en mai 1940.

Un photomontage diffusé par la propagande
allemande en 1940, représentant un bombardier
allemand au-dessus des Surrey Docks, a Londres.
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Lexikon History of computing Encyclopedia on CD ROM

Cependant, un collegue de Turing, le mathéma-
ticien Gordon Welchman, récemment arrivé dans
le méme service, se rend compte que le principe de
I"analyse de Turing peut étre généralisé. L’ extension
de la méthode par Welchman consiste a repérer de
nouvelles contradictions a partir de celles déja décou-
vertes : puisqu’Enigma conserve par construction
la symétrie entre le codage et le décodage, cette symé-
trie doit étre respectée dans toutes les configurations.
Par conséquent, une contradiction repérée entraine
sa symétrigue. Dans la mesure ol ces contradictions
dépendent de celles déja mises au jour, elles ne
peuvent pas étre prévues a I'avance. Néanmoins,
elles permettent d’éliminer d’un coup autant de confi-
gurations que la contradiction originelle.

En aodt 1940 sont construites les premicres
Bombes de Turing-Welchman, appelées aussi plus
tard Bombes britanniques en souvenir des Bombes
pelonaises. Elles operent une recherche systéma-
tique de toutes les contradictions dans le tableau de
connexions pour toutes les configurations pos-
sibles des rotors. Les Bombes britanniques restent
efficaces jusqu’au milieu de 1941.

Ainsi, trois stvles différents en cryptologie ont
rendue possible la maitrise — jamais acquise une fois
pour toutes —du décodage d’ Enigma : entre Rejewski
se limitant aux lettres de la clé du message, c’est-a-
dire dépendant d’un état externe et Welchman recher-
chant systématiquement dans un méme message
les configurations contradictoires non prévisibles a
I"avance, Turing occupe une position intermédiaire
qui rassemble deux themes qui lui sont chers: le

Le mathématicien Claude Shannon (1916-2001,
dessiné par Bridgette Greenia), fondateur de la
théorie de I'information. Lors de son passage aux
Etats-Unis, en 1942-1943, Turing discuta longuement
avec lui des notions d'information et d'intelligence.

développement des méthodes déterministes (assi-
milables a ses travaux en axiomatique formelle) fon-
dées sur des états probabilistes (ne dépendant pas
d’une extériorité).

Un (trop) franc succes

Pendant toute cette période alternent succes crypto-
logiques et succes militaires : le 23 février et le
7 mai 1941, les Britanniques s’emparent des codes de
I'ennemi sur un navire et, le 9 mai, a bord d’un sous-
marin. Ces différents succes permettent de lire pen-
dant un temps I'intégralité du trafic et de couler
plusieurs navires et sous-marins (en particulier le Bis-
marck, le plus grand cuirassé de la flotte allemande,
coulé avec I'aide du Service du chiffre le 27 mai 1941).
A tel point que I'on s’inquidte, a Bletchley Park, de
la trop grande efficacité du décodage. qui pourrait
mettre la puce i I’oreille des Allemands et les inciter
a modifier leur systeme de codage. En témoigne le
message suivant, émanant probablement de 1" état-
major allemand, enregistré le 22 avril 1941 et décodé
le 19 mai par I'équipe dont fait partie Turing:

DE: C dans C Marine

La campagne sous-marine rend nécessaire de res-
treindre sévérement la lecture des messages par le
personnel non autorisé. Encore une fois, j'interdis a
toutes les autorités n’avant pas re¢u d’ordre exprés
émanant de la Division des opérations ou de 'ami-
ral commandant les sous-marins d’écouter la fré-
quence des sous-marins en opération. Je considérerai
a l'avenir tout manquement a cet ordre comme un
acte criminel mettant en danger la sécurité nationale.

Toutefois, le caractére paranoiaque de la dicta-
ture qui sévit en Allemagne pousse I’état-major a
croire a un complot plutoét qu’a remettre en question
I'inviolabilité supposée d’ Enigma. .. Les choses chan-
gent en juillet 1941 quand, a coté d’ Enigma, appa-
rait, pour les opérations navales, un autre systéme
de codage fondé sur 1'usage du téléscripteur, codage
que les Britanniques dénomment Fish et qui concerne
les messages émanant du haut commandement. Turing
développe une méthode de décodage pour ce sys-
teme. mais n’est pas le maitre d’ceuvre de cette entre-
prise, qui est confiée i Max Newman, son professeur
de Cambridge. Ce dernier est arrivé a Bletchley
Park pendant I'été 1942. D autres responsabilités
incombent a Turing.

A partir de février 1942, date d’entrée en guerre
des Etats-Unis, la cryptologie du c6té allié est
autant une affaire américaine que britannique. Les
Américains proposent de prendre le contréle du tra-
fic dans I’ Atlantique en multipliant le nombre de
machines a décoder: cela a pour effet de diminuer
I"intérét pour les méthodes probabilistes inventées
par Turing, les machines a décoder étant suffisam-
ment nombreuses pour résoudre les milliards de solu-
tions par une recherche systématique. Les deux
pays signent un accord concernant I’accroissement
du nombre des machines ainsi qu'un échange immé-
diat et bilatéral d’information. C’est & Turing que
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Le Bismark, /e plus grand cuirassé de la flotte
allemande, qui fut coulé en mai 1941 avec I'aide
du Service du chiffre britannique.

Ci-contre, un des premiers bombardements aériens
massifs sur Londres, en septembre 1940.

I’on confie la mission de faire le point avec les équipes
de cryptologie américaines. Il part pour les Etats-
Unis le 7 novembre 1942. A ce moment-l1a, I'entrée
en guerre des Etats-Unis, bien que considérée comme
une bénédiction coté alliés, provoque néanmoins une
crise dramatique : les bateaux américains qui escor-
taient les convois jusqu’au milieu de 1" Atlantique
sont réquisitionnés dans le Pacifique pour partici-
per a la guerre contre le Japon.

En voyage secret
aux Etats-Unis

Le voyage secret de Turing aux Etats-Unis, toujours
en partie couvert par le secret défense, reste obscur
bien que des documents aient été rendus publics
en 1996. On sait cependant que Turing visita les Labo-
ratoires Bell, ot on lui laissa libre acces, et qu’il §”in-
téressa particulierement a la section chargée du
cryptage de la parole. Pour assurer la sécurité des
conversations téléphoniques de nature stratégique
entre les gouvernements américain et britannique, il
fallait en effet crypter la voix humaine en ondes
sonores : latechnologie électronique, tout juste nais-
sante. y trouva I'un de ses premiers champs d ap-
plication. Turing fut le seul étranger admis a voir le
prototype et & travailler aux nombreux problémes
d’ingénierie qu'il posait.

Le projet d’installation d’une ligne cryptée appe-
Iée «projet-X » entre Washington et Londres se des-
sine en février 1943 et devient opérationnel en juillet
1943, Le séjour de Turing aux Laboratoires Bell a
aussi des conséquences plus directement scienti-
fiques: Turing y rencontre Claude Shannon, a qui il
fait lire son article de 1936 et avec qui il a de nom-
breuses discussions concernant la notion d’infor-
mation, la possibilité d'incarner la logique booléenne
dans un dispositif matériel et d’imiter, par ce moyen,
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un fonctionnement jusqu’alors I"apanage de la pen-
sée. Ainsi, I'idée d'une machine «capable d’imiter
la pensée » commence a faire son chemin: le sens
de I'expression anglaise mechanical intelligence qui,
au début de la guerre, signifiait encore la mécanisa-
tion du renseignement commence a se transformer
en mécanisation de 'intelligence, au sens de phé-
nomene mental.

Lorsque Turing rentre a Bletchley Park aprés
son voyage aux Etats-Unis, la situation a évolué: le
décryptage des messages codés allemands est entré
dans une phase industrielle et des milliers de per-
sonnes travaillent, a I'aide des méthodes probabi-
listes mises au point par Turing et des machines qu’il
a congues avec Welchman, sur les différents canaux
cryptés de I'armée allemande. Max Newman dirige
I’organisation des services et, en particulier, le pro-
jet de construction d’une nouvelle machine électro-
nique de décryptage, le Colossus. Plusieurs versions
successives en sont construites sous I"impulsion de
I'ingénieur T. H. Flowers qui, dés les années 1930,
s'est intéressé a I'utilisation de la technologie élec-
tronique en transmission du signal. La machine est
consacrée au décryptage des messages Fish. Max
Newman propose a Turing de revenir a la « Hutte
n” 8», celle qui traite de I Enigma navale, mais Turing
décline I'offre: il a congu, sur le bateau qui le rame-
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Turing et Ia cryptographie moderne

aradoxalement, ce ne

sont pas tant les tra-

vaux de cryptanalyse

d’Alan Turing qui ont

influencé la cryptolo-
gie moderne que ses travaux théo-
riques sur /a Machine de Turing.
Bien évidemment, son approche
de la théorie de I'information et
les analyses statistiques pour
mener a bien les attaques contre
Enigma sont importantes, mais
ces méthodes n'auraient plus le
méme impact sur les cryptosys-
témes actuels, méme avec les
« bombes » bien plus performantes
que sont les ordinateurs.

En revanche, la Machine de
Turing est une modélisation de l'or-
dinateur toujours d‘actualité, qui
permet de définir le temps de cal-
cul d’'un programme, ou de l'ac-
complissement d’une tache: la
complexite d’un algorithme. Elle per-
met également de caractériser la dif-
ficulté relative de deux problémes,
avec la notion deréduction. Laréduc-
tion d’'un probléme P & un pro-
bleme Q consiste en effeta montrer
que s'il existe une Machine de Turing
capable de résoudre le probleme Q,
alors avec un nombre raisonnable
d'appels a cette machine on peut
résoudre le probléme P. Ceci per-
met alors de conclure que le pro-
bléme Q est au moins aussi difficile
que le probléme P.

Cette comparaison de deux pro-
blémes est désormais l'approche de
la cryptologie moderne, au sein d'une
cryptanalyse «constructive». La
cryptologie est divisée en deux
branches : la cryptographie, qui
consiste a définir des protocoles
cryptographiques, etlacryptanalyse,
qui analyse leur sécurité effective.
Pendant longtemps, ces deux
branches ont mené une lutte achar-
née, les cryptanalystes cherchant a
attaquer les systémes proposeés par
les cryptographes. Depuis une
dizaine d'années, la cryptanalyse est
devenue constructive: elle «prouve »
la sécurité des protocoles crypto-
graphiques.

Matyo

Plus concrétement, avec l'arri-
vée de la cryptographie a clé publigue,
on a proposé des systémes (chif-
frement ou signature) que I'on ne
savait «casser» sans, par exemple,
factoriser de grands entiers (le pro-
bléme de la factorisation est consi-
déré comme trés difficile). Toutefors,
une telle incapacité ponctuelle a cas-
ser le systéme n'excluait pas I'exis-
tence d'une technique non fondée
sur la factorisation qui mettrait en
défaut la sécurité. Il fallait donc envi-
sager qu'une telle technique puisse
étre trouvée et mise en ceuvre Ulté-
rieurement. Comment savoir si cette
autre technique était facilement
accessible ou non ? En comparant
le probléme du cassage du sys-
téme cryptographique (censé garan-
tir une notion de sécurité précise,
telle que la confidentialité ou I'au-
thentification) a celui de la factori-
sation. C'est I'objet des preuves de
sécurité : une telle preuve consiste
a montrer la difficulté relative entre
les deux problémes en réduisant le
second au premier. Par conséquent,
sous I'hypothése de la difficulté du
probléme de la factorisation (qui
sous-entend que la factorisation est
insoluble), le protocole cryptogra-
phique considéré est incassable.

Ainsi, bien qu’Alan Turing soit
plutét connu pour ses attaques
contre Enigma, il a permis a la cryp-
tologie de développer des méthodes
d‘analyse de sécurité : de nombreux
systémes concrets, en cryptogra-
phie aussi bien a clé secréte qu'a
clé publique, ont ainsi été prouves
sirs en utilisant ces techniques de
réductions.

David PointcHevAL, chargé de
recherche au cnRs, et responsable
de I'équipe de cryptographie de
I'Ecole normale supérieure

RANGEE
AVEC LES
AUTRES..

nait des Etats-Unis, un systeme de cryptage de la voix
humaine. Depuis, il se consacre a ce probleme de
nature a la fois cryptologique et physigue.

Dalila

En septembre 1943, tout en continuant a étre régu-
lierement consulté pour des problemes de cryptolo-
gie, Turing quitte Bletchley Park pour un laboratoire
de recherche en ingénierie de I'armée situé a Hans-
lope Park, a une quinzaine de kilometres de la. Il y
congoit et réalise, avec trés peu de moyens, une
machine €lectronique capable de crypter une voix
humaine transmise par le t€léphone. Il I'appelle Dalila,
du nom du personnage biblique, parce qu’elle a su
«se jouer des hommes ».

Le probleme auquel répond Turing ici n’est plus
celui qui se posait a Bletchley Park ou aux Laboratoires
Bell: le message codé est une onde physique, la voix
humaine. Ainsi, la clé du cryptage réside dans la
facon dont I’onde elle-méme est travaillée. Celle-ci doit
donner, au niveau du message, I'apparence de l'aléa-
toire complet, tout en étant complétement détermi-
née. En outre, au niveau physique, aucune perturbation
aléatoire ne doit introduire de désordre irréparable
qui empécherait la restitution de la voix. En d autres
termes, comment, dans un systeme déterministe, une
onde physique peut-elle apparaitre comme compléte-
ment aléatoire & un tiers tout en ne |'étant pas pour celui
qui posséde la clé de son décryptage ? 11 faut faire en
sorte qu’une méme onde soit interprétée comme une
onde physique seulement par un tiers et comme mes-
sage par celui qui posséde la clé. L'aléatoire est alors
réduit a un sentiment subjectif propre a celui qui ne
posséde pas la clé et n’a plus aucune place dans le
systeme physique déterministe envisagé.

Pour que le systéme de transmission soit bien un
systeme physique déterministe permettant la recons-
titution de la voix en bout de chaine, il faut que les para-
métres de transmission soient linéaires, de fagon qu’un
écart physique dans la transmission ne prenne pas des
proportions trop grandes a laréception : I'aléatoire phy-
sique doit intervenir le moins possible dans la trans-
mission. Pour cela, la synchronisation entre émetteur
et récepteur doit étre ajustée a la milliseconde pres.
C’est pourquoi lamachine mise au point par Turing est
limitée a la communication (éléphonique ou a la liai-
son radio sur ondes courtes dans un périmetre local :
les ondes radio plus longues ne permettent pas cette
synchronisation a cause des perturbations présentes
dans I"atmosphere.

Quelle est la nature du cryp-
tage de I'onde physique mis au
point par Turing ? Dans un rapport
écrit le jour du débarquement de
Normandie, il explique que les dif-
ficultés liées & la synchronisation
de la transmission lui ont fait aban-
donner I'idée d’une segmentation
de la clé reconstituable au moment
de la réception. En conséquence,
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National Security Agency

Une reconstitution de la machine Colossus (ci-dessus),
qui fut construite en 1942 a Bletchley Park sous la
direction de Max Newman pour décrypter un nouveau
systéme de codage des Allemands, dénommé Fish par
les Anglais. Ci-contre, la machine Dalila concue par
Turing en 1943 pour crypter les voix humaines.

il se propose d’utiliser une clé périodigue sous la forme
d’impulsions sur une période de huit minutes, a par-
tir d’un répertoire de 1023 clés partagé par I'émetteur
et le receveur. A chaque transmission, trois brouilleurs
transforment partiellement la clé: la fréquence du
signal qui constitue la clé est divisée en trois {ré-
quences, qui sont ensuite réparties par les brouilleurs
sur un spectre aussi uniforme que possible. Le
temps de parole est limité a huit minutes (durée de
réception de la clé) pendant lesquelles les trois dif-
férents types de signaux codés par les brouilleurs sont
recombinés. Le prototype de Dalila est terminé au
moment de lareddition de I' Allemagne, trop tard pour
étre utilisé pour les besoins de la guerre.

De juillet a aofit 1945. peu apres la capitulation
quiaeu lieu le 7 mai, Turing est envoyé en Allemagne
via Paris. avec un groupe anglo-américain d’experts
en communication, pour évaluer la situation alle-
mande. Il visite le laboratoire de recherche sur les
techniques de hautes fréquences et |'électro-acous-
tique qui a ¢té fondé a Ebermannstadt, prés de Bay-
reuth, ol il rencontre des cryptologistes allemands
qui font, devant un Turing jouant I’étonnement, une
démonstration du cryptage effectué avec la machine
que les Britanniques appelaient Fish. Pendant son
séjour a Ebermannstadt, les deux bombes ato-
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miques américaines sont lancées sur le Japon et Turing
n’en est pas surpris, lui qui connaissait, depuis son
voyage secret aux Etats-Unis de 1942-1943, I'exis-
tence du projet de Los Alamos — dans une propor-
tion encore non élucidée. 1l en profite pour décrire
a ses collegues le principe de la réaction atomique.
Le voyage en Allemagne confirme ce que les Alliés
savaient déja concernant le niveau technologique
avancé de I’ Allemagne.

Ainsi, a partir de son retour des Etats-Unis en
1943, Turing revient progressivement vers les sciences
de la nature : alafois vers la physique — avec Dalila
et le probléeme du codage de I’onde physique —, mais
aussi vers la biologie — en particulier avec son pro-
jetde «construire un cerveau », qu’il ne faut pas iden-
tifier a celui de «construire un ordinateur ». =

O
=
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a construction des premiers ordinateurs a fait I’objet
d’une querelle de priorité complexe parce qu’elle était
associée 4 la fois a la défense nationale des pays concer-
nés et, pour des raisons financiéres, & la délivrance de
brevets commerciaux. Avec le recul, il est aujourd”hui
possible de reconstituer I"histoire des projets et des
constructions effectives des premiers ordinateurs.

Le premier ordinateur au monde fut concu au
XIx*© siecle par le mathématicien anglais Charles Bab-
bage. mais celui-ci ne put jamais le réaliser. De 1822
asamort en 1871, Charles Babbage dessina plusieurs
plans d’un ordinateur mécanique. dont une réplique
en état de marche fut construite a Londresen 1991 (voir
page 84).Cette machine est mécanique, programmable
et « Turing-compléte », ¢’est-a-dire équivalente a une
machine universelle de Turing. On distingue aujour-
d’hui la préhistoire et I'histoire de I’ordinateur selon
que la machine construite est ou non «Turing-com-
plete ». Si 'on classe les projets et les réalisations
selon ce critere, on constate alors que le premier ordi-
nateur « Turing-complet » a avoir été construit est

Les premiers ordinateurs

A la fin des années 1940, Turing participe a la construction de deux ordinateurs
britanniques. Toutefois, ce n'est pas tant la prouesse technique qui I'intéresse
que les rapports entre construction artificielle et croissance organique.
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allemand et date de /941. On imagine les graves consé-
quences sur la guerre si, au lieu d’avoir été margina-
lisé, I’ordinateur avait eu, coté allemand, le destin
industriel auquel il aurait pu prétendre. Avant de cer-
ner le role de Turing dans la naissance de I'informa-
tique, rappelons ses grandes étapes.

Les premiers pas
de linformatique

L'informatique est née dans les années 1930, dans un
foisonnement d’initiatives individuelles au sein de trois
pays, I Allemagne, la Grande-Bretagne et les Etats-
Unis. Les machines construites visent toutes a auto-
matiser les calculs et les opérations logiques. Pendant
I"hiver 1937-1938, I'ingénieur américain John Atana-
soff congoit a I’ flowa State College un ordinateur pro-
grammable, électronique, binaire, digital, séparant
les fonctions de mémoire et de calcul. En 1939-1942,
ayant recu une bourse, J. Atanasoff se lance dans la
construction de cet ordinateur avec I’aide de 1'ingé-
nieur Clifford Berry. En 1943, I'ingénieur anglais
Tommy Flowers congoit (en février) et réalise (en
décembre) a Bletchley Park les machines Colossus 1
et /1, destinées a briser le code secret allemand
dénommé Fish. Ces machines sont électroniques,
binaires et digitales. Les machines d’ Atanasoff et de
Flowers font partie de la préhistoire de I'informatique :
elles ne sont pas « Turing-complétes ». En d’autres

Notes écrites par Augusta Ada King, comtesse de Love-
lace (en haut), comportant un programme de calcul
qu’elle a concu pour le calculateur de Charles Bab-
bage. Lady Lovelace participa activement & la concep-
tion de la machine de Charles Babbage, le premier
ordinateur au monde. Ci-dessus, l'ingénieur américain
John Atanasoff sur une photographie de 1938 et un
schéma de la machine qu'il construisit @ la méme époque,
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termes, elles n’ont pas de programmes intégrés et néces-
sitent que I’on change leur ciblage a chaque type d’opé-
ration. En outre, elles ne possédent pas ce que 1’on
appelle «I'architecture von Neumann », c’est-a-dire
une mémoire qui, contenant a la fois les instructions
et les données, peut recevoir différents programmes.
Les machines Colossus stockent néanmoins les pro-
grammes de fagon électronique.

En 1941, I'ingénieur allemand Konrad Zuse congoit
et réalise, dans un isolement complet, le 23 (Zuse 3),
premier ordinateur au monde « Turing-complet ». Cette
machine est programmable (au moyen d’un langage
de programmation appelé Plankalkiil), binaire, digi-
tale et électromagnétique. Cet ordinateur, qui effec-
tuait des calculs dans une usine d”avions pour le profilage
des ailes, fut détruit dans un bombardement allié en
1944, Konrad Zuse construisit une autre machine, la
74, qui fut alors démontée par crainte des bombarde-
ments et remontée en 1945. En 1950, Konrad Zuse,
ayant fondé une société commerciale, livra 4 I'Ecole
polytechnique de Zurich, ot il avait fait ses études, un
exemplaire de la 74, qui continua d’y fonctionner jus-
qu’en 1954,

En février 1944, le physicien Howard H. Aiken et
la mathématicienne Grace Hopper congoivent, avec des
crédits d'BMm, le Ascc (Automatic Sequence Control-
led Calculator). Le 7 aotit 1944, I’ ordinateur est envoyé
al'Université de Harvard aux Etats-Unis, ot il est nommé
Harvard Mark 1.11 s’ agit d’une machine « Turing-com-
pléte », électronique et programmable.

I'asc. Cet ordinateur résolvait des systémes de 29 équa-
tions a 29 inconnues, en ajoutant ou enlevant de maniére
répétitive une équation a une autre, jusqu’a ce qu'une
variable de la seconde équation soit éliminée. Pour cela,
I'nsc lisait les coefficients des variables sur des cartes
perforées, les convertissait en base 2, effectuait les opé-
rations et stockait les nombres restants de I'équation
sur des cartes perforées, pour un usage ultérieur.
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Le 15 février 1946, J. Presper Eckert et John William
Mauchly, en s’inspirant de la machine d’AtanasofT,
qu’ils ont rencontré de nombreuses fois, font fonctionner,
a I'Université de Pennsylvanie aux Etats-Unis, une
machine dont le contrat de construction avait ét€ signé
le 5 juin 1943, I’ENiAc (Electronic Numerical Integra-
tor and Computer). Cet ordinateur binaire, digital et
électronique, qui doit étre reprogrammé a chaque opé-
ration, est fondé sur un rapport de John von Neumann

datant du 30 juin 1945, le Draft Report on the Electro-
nic Discrete Variable Automatic Computer (EDVAC), dans
lequel von Neumann se sert explicitement du concept
de machine de Turing (voir page 43).

Le 19 février 1946, Turing présente au National
Physical Laboratory (Nr) de Teddington, en Grande-
Bretagne, le projet Ace (Automatic Computing Engine),
ordinateur « Turing-complet» a programme interne.
Une machine plus petite congue sur le méme principe,
le Pilot ACE, ne sera achevée que le 10 mai 1950.

Le 21 juin 1948, le ssem (Small-Scale Experimen-
tal Machine, surnommé « Baby»), premier ordinateur
a programme intégré, congu et réalisé par Frederic
C. Williams et Tom Kilburn, devient opérationnel a
I'Université de Manchester, en Grande-Bretagne. Turing
fait partie de I'équipe a partir de juillet 1948. L'ordi-
nateur est remplacé par un autre plus puissant, le
Manchester Mark I (Manchester Automatic Digital
Machine, appelé «mapm») des1949.

Le 6 mai 1949 commence a fonctionner, & I'Uni-
versité de Cambridge, Grande-Bretagne, " Ensac ( Elec-
tronic Delay Storage Automatic Calculator), un
ordinateur congu sur les plans du rapport de John von
Neumann de 1945. En aofit 1949, I'ordinateur congu

Un technicien changeant un tube a vide défectueux
de I'eniac, a rechercher parmi les 19 000 tubes qui
composaient la machine. Le Pilot ace (en haut)
construit par le National Physical Laboratory en 7950,
d’'aprés le projet ace présenté par Turing en 1946.
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par John von Neumann dans ce rapport, I'Epvac, est
enfin construit & I'Université de Pennsylvanie.

Dans ce foisonnement d’initiatives, Turing a joué
un role important, moins en tant que maitre d'ceuvre
d’un projet spécifique que par le fait quil est I'auteur
du concept-clé de machine de Turing. A bien des égards,
Turing est déja décalé par rapport aux projets de construc-
tion technique de I’ ordinateur et sa contribution dans ce
domaine reste modeste. Ce qui I'intéresse au premier
chef est d’incorporer ce projet technique dans un
cadre théorique beaucoup plus général, celui du déter-
minisme, sous 1’aspect des rapports entre construc-
tion artificielle et croissance organique.

Déjaen 1944, alors qu'il travaille sur sa machine a
crypter la voix, il confie a I'un de ses assistants qu’il
veut «construire un cerveau». Or un cerveau ne se
«construit» pas, puisqu’il est le résultat d’une crois-
sance : ce dilemme entre construction artificielle et crois-
sance organique oriente dorénavant sa recherche
personnelle, beaucoup plus que la construction des ordi-
nateurs ou celle d’une «intelligence mécanique ». C’est
en gardant en mémoire les problemes que posent les
rapports entre construction et croissance que I'on appré-

Leovac, ordinateur construit en 1949
a I'Université de Pennsylvanie a partir de plans

de John von Neumann. Ci-dessus, l'ordinateur -

Manchester Mark |, construit en 1949 par I'équipe
«informatique » de I'Université de Manchester, dont
Turing faisait partie depuis 1948.

© Les génies de la science - Turing

cie pleinement la nature de sa participation a deux pro-

jets britanniques de construction de I’ordinateur qui se

mettent en place dans les années 1945-1950.

Le moins de cables possibles

Turing quitte Hanslope Park pour le National Physi-
cal Laboratory, basé a Teddington, le 1" octobre 1945.
Le npr est alors en train de se doter d"un département
de mathématiques divisé en sections, dont I'une est
réservée a Turing : celle qui a pour but la construc-
tion d’un ordinateur, I’'ace. Le projet de Turing se
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distingue des autres projets de 1'époque, essentielle-
ment américains, par le fait qu’il cherche a réduire au
maximum tout ciblage dédié a une opération parti-
culiere ; d’un point de vue logique, en effet, toute
opération matérialisée dans un cablage peut étre
remplacée par des lignes supplémentaires de pro-
grammation. Ainsi, Turing appelle sa machine une
«machine de papier», ses seules pieces matérielles
vraiment importantes étant la mémoire et le controle.

A I’époque, le probleme du stockage en mémoire
est délicat parce que le rationnement impose de faire
fleche de tout bois et d” utiliser des technologies soit sur-
années, soit peu fiables. Fort de son expérience récente
avec sa machine a crypter la voix, Turing opte pour un
composant dont la technologie est bien maitrisée, le
retardateur & mercure. Le retardateur & mercure reléve
de la physique des cordes vibrantes: il s’agit d’un tube
rempli de mercure, relié a chaque bout a un transduc-
teur piézo-électrique, dispositif qui regoit, puis émet
un signal. Chaque son re¢u a un bout du tube, assimilé
2 un signal représentant un nombre, propage une onde
dans le mercure, qui est recue comme son par I’autre
transducteur piézo-électrique. Il est alors possible, grace

M. V. Wilkes, I'un des pionniers du Computer
Laboratory de I'Université de Cambridge,

devant un retardateur & mercure. Ci-dessus, I'ensac,
ordinateur construit @ I'Université de Cambridge
en 1949 d’aprés les plans fournis par

John von Neumann dans son rapport sur I'epvac.
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a un autre composant, de propager a nouveau le méme
son & travers le tube. Tant qu’il y a alimentation élec-
trique, le tube fonctionne comme une mémoire relati-
vement rapide, la vitesse de propagation du son dans
le mercure étant élevée (1450 metres par seconde). De
nombreux signaux sont ainsi lancés a travers le tube,
propageant des ondes dans le mercure. Reste alors a
synchroniser le contenu de la mémoire avec 1" ordre
des opérations en cours dans I'ordinateur. Ce contréle
du caractére séquentiel des opérations est assuré par une
horloge générale qui bat la mesure.

L'idée-phare du projet Act de Turing, idée qu’il
considére comme «trés puissante» et qui fut aussi
découverte par von Neumann, consiste a permettre a
la machine elle-méme d’effectuer différentes ins-
tructions selon I'étape du calcul en cours et a modi-
fier ainsi son programme interne. En d’autres termes,
Turing établit une hiérarchie dans les instructions des
programmes et fait, autant de fois que nécessaire selon
les signaux & traiter, des boucles & I'intérieur des lignes
du programme.

Dans un rapport achevé fin 1945, Turing prophé-
tise que I’AcE exécutera le travail de 10000 calcula-
teurs humains. Il ajoute que tout travail programmé pour
étre traité par I'ACE pourra étre réalisé a distance, grice
aux lignes téléphoniques. I ne suffira alors que d’un
nombre limité de personnes aupres de la machine pour
s’occuper de sa maintenance. Malheureusement pour
Turing, un peu trop en avance sur son temps, la réali-
sation du projet, décidée le 8 mai 1946, traine en lon-
gueur pendant quatre ans, pour des raisons plus
administratives que techniques. L'ordinateur ACE n’est
inauguré qu’en novembre 1950,

« Construire un cerveau»

Pendant son séjour au NPz, Turing est envoyé du 7 au
10 janvier 1947 a une conférence a Harvard, aux
Etats-Unis, ol se tient un large symposium sur la
construction des calculateurs. Il en revient sans avoir
appris grand-chose de nouveau, sans doute parce que,
comme il le confie a1'époque au neurologue W. R. Ashby,
il ne s’intéresse pas directement 2 la mécanisation du
calcul en tant que telle: «En travaillant a I'AcE, je suis
plus intéressé par la possibilité de produire des modeles
de I'activité du cerveau que par les applications pra-
tiques du calcul. »

Cette problématique marginale 1’éloigne de ceux
qui, au NPL, sont préoccupés par la réalisation concrete
du projet. Le 30 septembre 1947, Turing donne sa démis-
sion et repart & Cambridge pour I'année universitaire
1948-1949, en utilisant la fin de son allocation de
recherche qu’il avait recue en devenant Fellow et qu’il
n’avait pas utilisée entierement du fait de la guerre. Au
méme moment, il accepte de partir I’année suivante a
Manchester, dans un nouveau laboratoire d’informa-
tique, créé par son ancien professeur de Cambridge Max
Newman. Contrairement a ce que |’on aurait pu croire,
ce n’est pas pour faire des mathématiques ou pour par-
ticiper a la constitution universitaire de I'informatique
naissante qu’il repart 2 Cambridge, mais pour suivre
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Alan Turing penché sur la Ferranti Mark | Console,

un ordinateur construit en 1951 par I'équipe
informatique de Manchester. Turing est en compagnie
de Brian Pollard et Keith Lonsdale, deux autres
ingénieurs de I'équipe.

des cours de physiologie: Turing reste fidele aux
questions théoriques qu’il se pose depuis la fin de la
guerre sur les rapports entre la construction matérielle
et la croissance organique.

A Manchester, ot il estnommé en juillet 1948, Turing
arrive au sein d’une équipe déja constituée et qui a
déja réussi le tour de force de faire «tourner» pour la
premiere fois un programme, le 21 juin 1948. 1l
occupe un poste a part, créé pour lui.

Du point de vue logiciel, il se lance tout d’abord
dans un travail de programmation visant a simplifier
la machine. Toutefois, Turing travaille dans une
arithmétique de base 32 (pour des raisons liées a la
taille des tubes de mercure servant de mémoires), ce
qui ne facilite ni la programmation ni les rapports avec
ses collégues. Du point de vue matériel, il essaye de
construire un générateur aléatoire. On devine ici la
nature de ses préoccupations: Turing tente de réin-
troduire, dans la construction intégralement détermi-
niste de la machine, une composante non déterministe
permettant de simuler la nature physigue. Pour ce faire,
il utilisa sans doute son expérience liée & la concep-
tion de Dalila : Dalila contenait un générateur que I'on
qualifierait aujourd’hui de pseudo-aléatoire, repo-
sant sur l'usage d’algorithmes qui simulent I’ aléatoire,
mais, étant déterminés, ne peuvent pas étre comple-
tement aléatoires.

Ainsi, laencore, Turing se confronte avec le rapport
entre le niveau informatique, de nature intégralement
déterministe, et le niveau physique dans lequel I'aléa-
toire a une part objective. Nous verrons que c’est pré-
cisément ce rapport qui I'occupera, d’un point de vue
théorique, jusqu’a la fin de sa vie. il

TURING




ans son article de 1936 sur la calculabilité, Turing
tragait a priori les limites entre le calculable et le
non-calculable. Ces limites, dans la mesure ou elles
portent sur le domaine du nombre, ont aussi une por-
tée théorique beaucoup plus générale: elles cir-
conscrivent le déterminisme prédictif. Turing le
comprend pendant la guerre: il remarque qu’il est
possible de tracer des limites au déterminisme pré-
dictif non seulement dans le cadre de I’axiomatique
formelle, mais aussi dans celui des sciences de la
nature. A son retour des Etats-Unis en 1943, il adopte
donc la posture théorique qui était déja la sienne en
1936, mais déplacée aux sciences de la nature: il se
situe des deux cotés de la limite caractérisant le déter-
minisme prédictif, d’une part en participant a la maté-
rialisation du déterminisme prédictif dans une

machine — I’ordinateur — et, d’autre part. en explo-
rant des domaines expérimentaux qui se situent au-
dela du déterminisme prédictif, dont un en particulier,
la morphogenése biologique.

Le fruit de ce travail est son article de biologie
théorique publié en 1952 dans les Philosophical Tran-
sactions of the Roval Society sous le titre Chemical
basis of morphogenesis (La base chimique de lamor-
phogenése), que Turing juge aussi fondamental que
celui de 1936: dans les deux cas, Turing invente des
concepts nouveaux — celuide «machine de Turing»
d’une part, et, nous allons le voir, celui de «struc-
ture de Turing » de I'autre. Ces concepts lui permet-
tent de tracer des limites théoriques analogues entre
processus prédictibles et processus non-prédic-
tibles. Ce point de vue est fructueux, parce que Turing

Le déeterminisme

iy Pourquoi les étres vivants sont-ils similaires d’une génération
= 4 l'autre ? Pourquoi le ceeur des fleurs est-il organisé ? Telles sont

les questions auxquelles se consacre Turing a partir de 1947.

Stuari Originals

The Chineese University of Hong Kong
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ne se contente jamais d’étendre le domaine du
déterminisme prédictif & un substrat déja existant ; il
articule des phases mutuellement exclusives du déter-
minisme pour faire surgir de nouveaux phéno-
ménes. La fécondité de la science tient moins a la
recherche de I’exhaustivité qu’a la construction de
nouveaux objets scientifiques.

Les limites du déterminisme prédictif avaient déja
été explorées par Henri Poincaré (1854-1912). Le
mathématicien et physicien francais s”était notam-
ment intéressé au probléme des trois corps. En effet,
toute prédiction a priori sur I’évolution d’un systéme
physique possédant trois corps ou plus est impos-
sible : on peut écrire les équations qui décrivent I’évo-
lution d’un systéme constitué de trois corps mils par
leurs interactions gravitationnelles, mais on ne peut

et le vivant

prédire leur trajectoire. Puis quelques mathématiciens
russes, comme Alexandre Andronov (1901-1952),
s’étaient penchés sur le probleme. Toutefois, ces résul-
tats étaient restés isolés, sans doute parce que la ques-
tion des rapports entre les limites du déterminisme
dans les sciences abstraites (mathématiques et logique)
d’une part, et celles de la nature (physique et biolo-
gie) de I'autre, ne se posait pas encore avec une
assez grande précision.

C’est cette question qui apparait & Turing aprés
1943 : a partir du moment ot la construction d’une
machine déterministe au sein de la nature devient pos-
sible, les recherches sur le déterminisme dans les
sciences abstraites et celles de la nature se rejoignent.
11 devient alors possible de s’interroger sur les limites
du déterminisme prédictif en général. Ainsi, I'année

A la fin des années 1940, Turing revient @ ses amours de jeunesse: il s'interroge sur l'organisation
dans le vivant. Pourquoi, par exemple, les moutons se ressemblent-ils de génération en génération?
Page ci-contre a gauche, une vue de Wilmslow, prés de Manchester, ot habite Turing a la fin de sa vie,
sur une peinture de Martin Stuart Moore. Page ci-contre a droite, I'Université de Manchester,

ol Turing effectue ses recherches en biologie a la fin des années 1940.
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En 1953, Jim Watson et Francis Crick découvrirent la
structure en double hélice de 'ADN. Cette découverte
alimenta la métaphore du « programme génétique »
selon laquelle tous les étres vivants ont le méme code
génétigue et seules les instructions d’exécution

du programme changent en fonction des individus.
Bien que la métaphore s'inspire de la machine

de Turing, celui-ci ne chercha pas du tout a traduire
son idée du déterminisme du vivant en termes

de programme génétique.

1943 marque le début d’une tentative unitaire : Turing,
tout en restant déterministe, adopte un point de vue
a la fois prédictif-calculable (en logique avec la
machine de Turing et en physique avec I’ordinateur)
et non prédictif, non calculable (en logique avec le
probleme de I"arrét et en biologie avec la morphoge-
nese). Décrivons les recherches biologiques qu’il méne
a plein temps a partir de 1948, mais pour lesquelles
il portait un intérét depuis I’enfance.

Le déterminisme
dans la nature

Turing quitte le National Physical Laboratory au prin-
temps 1947 et passe une année sabbatique a Cam-
bridge pendant I’année universitaire 1947-1948
pour se consacrer a ses recherches biologiques. Il
accepte en outre un engagement au Manchester
University Computing Machine Laboratory ou Max
Newman a créé pour lui un poste a la rentrée univer-
sitaire 1948. Jouissant d’une grande liberté dans ses
recherches, il s’immerge dans la biologie du déve-
loppement, méme s’il fait un certain nombre d’ex-
posés « grand public » sur ce qui s’appelaital’époque
I« intelligence mécanique ». Turing est élu Fellow
de la Royal Societyle 15 mars 1951 a partir d’un rap-
port signé par Bertrand Russell et Max Newman. Ce
rapport mentionnait son article de 1936. ce qui fitdire
aTuring qu’il aurait pu étre nommé a I’ age de 24 ans. ..
Manchester sera son dernier poste universitaire, puisque
¢’est dans la maison qu’il achéte & Wilmslow, prés
de Manchester, qu’il se suicidera trois ans plus tard,
le 7 juin 1954.

Depuis 1943, Turing a pris une certaine distance
critique a I'égard du paradigme formaliste du codage
qui a cours dans 1'axiomatique formelle ou la cryp-
tographie. Il s'intéresse a I'origine des formes orga-
niques de la nature, leur apparition premiére, mais
aussi a la raison pour laquelle une forme organique
donnée engendre une forme organique analogue a la
génération suivante. Ce processus le fascine. 11 est

Vue d’artiste du double pulsar PSR J0737-3039
découvert en 2003. Les pulsars sont des phares
cosmiques : ces étoiles tournent sur elles-mémes en
émettant des faisceaux d’ondes radio qui balayent
I'espace et apparaissent comme des éclairs
périodiques aux observateurs. Les pulsars font partie
des rares systémes physiques déterministes prédictifs.
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déterministe, puisqu’une forme organique n’engendre
pas n’importe quoi (un chat n’engendre pas une gre-
nouille). Mais il ne résulte d’ aucun codage : ¢’est 1’ or-
ganisation interne de la matiére, sa déformation, qui
fait surgir des formes et les maintient, avec des
variations, i travers les dges. On est loin de I'axio-
matique formelle ou de la cryptographie, o les formes
(théoréme ou message) relevent d’un code (celui du
codage numérique des propositions ou des messages).
Mais de quel déterminisme s’agit-il, si la notion de
codage en est absente ?

Avant de répondre 2 cette question, dissipons un
malentendu. Une solution vient tout de suite a I'es-
prit aujourd’hui, et on imagine mal Turing passer a
coté : lamétaphore du « programme génétique ». Selon
cette métaphore, le code génétique est le méme chez
tous les étres vivants, et chaque individu est le fruit
de la traduction du code en un programme génétique
spécifique, ¢’ est-a-dire en une liste d’instructions spé-
cifiques, semblable & un programme informatique.
En tant que théoricien de la notion de programme
informatique, Turing aurait pu appliquer cette notion
a la biologie. Or il n’en est rien. Certes, la méta-
phore est plus récente que les travaux de Turing, puis-
qu’elle s’est progressivement constituée a partir de
la découverte de la structure de I'’ADN par Watson
et Crick en 1953 jusque dans les années 1970 avec les
travaux des biologistes francais Jacques Monod et
Francois Jacob. Néanmoins, on peut dire rétrospec-
tivement que Turing ['a déja dépassée: il a compris
que la question du déterminisme inhérent aux formes
vivantes est une question limite ou s’articulent le
prédictif relevant du programme et le non-prédictif
qui n’en reléve pas.

C’est d’ailleurs pour cette raison que la forme
vivante entre dans son cadre méthodologique. Dans
le cas des systémes déterministes prédictifs, la pré-
diction est possible parce que ni I’espace ni les para-
métres rendant compte de I'évolution du systeme
considéré ne changent au cours du temps : le proces-
sus évolutif peut toujours étre reconstitué, y compris
si on inverse la direction du temps. Au contraire,
dans de nombreux systemes physiques et plus encore
dans des systémes vivants, le nombre et la nature
des paramétres changent au cours du processus, modi-
fiant la nature de I’espace ou se déroule I'évolution.
Ainsi, I'itération, si fondamentale en théorie de la cal-

Naissance d‘une structure de Turing. Dans un systéme
activateur (rouge)-inhibiteur (bleu) homogéne
apparaissent des hétérogénéités de concentration.
Sous I'effet de fluctuations du milieu, un léger excés
d’activateur (1) se forme localement. La concentration
locale en activateur croit alors (2), entrainant la
production locale d'inhibiteur. Linhibiteur diffuse plus
rapidement (3) que I'activateur, empéchant la
concentration d‘activateur d’augmenter autour du pic
d’activateur, qui est ainsi circonscrit. La concentration
en activateur diminue de méme autour du pic.
D’autres pics d'activateur émergent (4), mais @
distance du premier. Au final, une structure
stationnaire périodique se forme (5).
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culabilité et en informatique, devient ici partiellement
inopérante : aucun processus dans un systeme déter-
ministe non prédictif n’est itérable sous les mémes
conditions initiales.

Seuls des systémes physiques rudimentaires
comme le pendule simple ou le pulsar ne sont pas
«sensibles aux conditions initiales » dans la nature.
En d’autres termes, seuls quelques rares systémes
physiques sont descriptibles 2 I'aide d"un programme
d’ordinateur. La plupart des problemes physiques ne
relevent du paradigme déterministe que par approxi-
mation et montrent donc la limite de la matérialisa-
tion d’une machine de Turing en un ordinateur. On
retrouve ici la méthode chére a Turing, ol il décrit a
la fois le déterminisme calculatoire prédictif et ses
limites intrinséques.

Turing répond & la question du déterminisme inhé-
rent aux formes vivantes en physicien et ce dans
deux domaines, la morphogenese et la phyllotaxie.

Le modele
de réaction-diffusion

La morphogenése, étude des mécanismes de crois-
sance des formes biologiques a partir de leur fécon-
dation, est une branche de la biologie du
développement. Le modele imaginé par Turing
consiste, en partant d’un état homogeéne de la matiére,
2 étudier, d’un point de vue mathématique, I’origine
d’une organisation. Turing appelle cette origine «insta-
bilité catastrophique » : elle est le résultat d’une sin-
gularité, décrite mathématiquement comme une
transition infinitésimale entre deux états, transition
pouvant provoquer des changements radicaux dans
I’organisation de la matiére, comme la transforma-
tion subite de I’eau en glace. En d autres termes, cette
instabilité catastrophique rend possible 1'apparition
d’une forme géométrique discrete au sein d'un milieu
au départ amorphe et homogéne.

Etablissement d'une structure périodique
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Recherche d’Alan Turing sur la dispersion des tdches qui constituent les structures de Turing (a gauche).

A droite, une structure de Turing de la nature : les motifs du dos d'un guépard. De nombreux montages
expérimentaux reproduisant les structures de Turing ont été réalisés depuis ses travaux. Une facon d'en faire
apparaditre consiste a maintenir artificiellement l'instabilité catastrophique entre les substances chimiques
inhibitrices et activatrices par une alimentation continue du systéme en substances selon des concentrations
différentes. On se place alors expérimentalement dans l'intervalle de temps « catastrophique » et I'on rend

visibles les phénoménes d'ondes stationnaires.

Le modele, appelé par
Turing «réaction-diffu-
sion », se limite aux
réactions chimiques
et laisse de coté
toutes les autres
contraintes phy-
siques comme les
forces mécaniques ou
€lectriques ; il décrit seulement les
conditions de conversion, au sein du
vivant, d’une dynamique de nature
chimique en forme géomé-
trique. Turing se donne deux
substances idéales, appelées « mor-
phogenes », qui diffusent avec des
vitesses différentes au sein d'un
systéme et qui ont respectivement
un role activateur et inhibiteur.
Au départ, les deux morphogénes
sont dans un état stable, mais une

Hydra, petit polype d'eau douce,
ne semble pas perturbé par les
endommagements. Il se répare

et retrouve un état d'équilibre
comme s'il ne I'avait jamais
quitté. Son comportement est
globalement prédictif.

%ip,
- Bl
fho' Ut eqduiimages/Hydra.jpd

perturbation aléatoire entraine une production sup-
plémentaire de I'un des morphogénes, production
assez élevée pour que le systeme quitte 1’ état d*équi-
libre. La vitesse de propagation des substances chi-
miques a alors tendance a croitre selon une «dérive
exponentielle », explique Turing, qui rend impossible
toute prédiction sur I'état futur du systeme. Si le
systéme se conserve en tant que systéme, c’est que
des mécanismes régulateurs internes évitent son explo-
sion sous le coup d’une propagation trop rapide. Quels
sont ces mécanismes ?

Turing s’en tient a I"étude des cas qui ne dévient
pas trop de I'état d’équilibre. La compétition entre
réaction et diffusion fait alors apparaitre localement
un état oscillant composé d’ ondes stationnaires, phé-
nomenes d’auto-organisation du milieu que 1’on appel-
lera plus tard des «structures de Turing ». En décrivant
analytiquement les paramétres de controle des
équations de propagation des deux morphogénes,
on détermine les cas ou les états oscillants appa-
raissent. Ainsi, en maintenant de facon artificielle le
systeme dans un état proche de 1'équilibre, on
révele des phénomeénes physiques qui, sinon, seraient
passés inapercus. Turing remarque, dans son article
de 1952:

L’objet particulier de 'enquéte consistait a étu-
dier des phénoménes au moment oit le systéme entrait
dans une phase instable. Pour rendre le probléeme
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mathématiquement traitable, il était nécessaire de
faire I’hypothese que le systéme ne déviait jamais trés
loin de son homogénéité originelle. Cette hypothese
était appelée « hypotheése de linéarité » parce qu’elle
permettait de remplacer les fonctions générales de
taux de réaction par des fonctions linéaires. L"hypo-
thése de linéarité est importante. Sa justification
provient du fait que 'on s’attend a ce que les formes
produites dans les premiéres étapes quand ['hypo-
these est valide ont une forte similarité qualitative
avec celles qui s"imposent dans les étapes ultérieures
quand elle ne 'est plus.

L’ hypothése de linéarité est une hypothése lapla-
cienne, dans le sens ou elle rend possible un déter-
minisme prédictif local. Elle n’est pas généralisable
puisque, dans le cas général non-linéaire, ¢’est-a-
dire dans les cas qui s’éloignent trop de I"équi-
libre. aucun traitement systématique n’est
envisageable.

Turing ne décrit pas la facon dont les ondes sta-
tionnaires sont conservées dans la durée chez un orga-

nisme donné. Pour lui, ces ondes sont I'étape finale |

du développement de 1’organisme au cours de
I"histoire de son individuation et expliquent en par-
tie les causes de sa forme. Les exemples étudiés par

Turing sont ladisposition des taches et des couleurs \ '

de pelages ainsi que la structuration en anneau des
tentacules chez certains animaux.

Ce dernier exemple s’inscrit tout a fait dans I"hy-
pothese laplacienne: il porte sur un petit polype
d’eau douce, Hydra. qui se dédouble en réarran-
geant une partie sectionnée de lui-méme pour for-
mer un nouvel organisme complet. A I'instar de
certaines cellules qui, au cours de la morphogenése
des organismes s’ adaptent au milieu dans lequel elles
sont implantées a certaines phases précises du déve-
loppement, Hydra retrouve un état d’équilibre glo-
bal comme si, au moyen d’une régulation laplacienne,
il conservait un état d’équilibre malgré toutes les
perturbations « catastrophiques ».

Cependant, la description mathématique présen-
tée par Turing ne correspond pas exactement au cas
auquel un biologiste s’attend. Ainsi, le biologiste de
la morphogenése C. H. Waddington écrit a Turing le
12 septembre 1952 que I'exemple des taches sur les
pelages des animaux lui semble avoir une plus grande
plausibilité expérimentale que celui des Hydras.

La phyllotaxie
et la suite de Fibonacci

Pour tenter de comprendre la genése des formes
de la nature, Turing a aussi observé les plantes. Il
s'intéresse a la phyllotaxie, laquelle consiste en
I’étude de la disposition respective des parties des
plantes. Dés le Xi1x¢ siécle, les savants avaient
noté que le cceur d’une fleur est composé d’éta-
mines disposées sur le principe d'une double spi-
rale. Ces spirales ont des propriétés particuliéres :
ce qui préside a leur construction respecte le
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Les graines de tournesol sur une inflorescence
s‘agencent en spirales trés réguliéres

(les unes dans un sens, les autres en sens inverse)
que I'on peut compter. A chaque fois, on obtient deux
nombres consécutifs de la suite de Fibonacci,

une suite que I'on construit en partant de 0 et 1,

et ol tout nouveau terme est la somme des deux
précédents (0,1, 1,2, 3, 5,8, 13, 21, 35, 55, 89...).
Turing étudia I'organisation des étamines

du tournesol, comme en témoigne le dessin
ci-dessous, ot il recopia leur position et les numérota.

Photo Disc/ Belin - Pourlascience

P. N. Furbank
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THE CHEMICAL BASIS OF MORPHOGENESIS

Bv A. M. TURING, F.R.S. University of Manchester
(Received 9 November 1951—Revised 15 March 1952)

It is suggested that a system of chemical suk , called morphogens, i ,' and
diffusing through a tissue, is adequate to account i‘nr the main uf morp i
Such a system, although it may originally be quite hormgmeoui. may later dwdopaputem
or structure due to an instability of the homogeneous equilibrium, which is triggered off by
random disturbances. Such mmndal’l’uﬂmmmmﬂﬁdmwm detail mﬂwm
of an isolated ring of cells, a h h biologicall
mmvuugahunuchleﬂymmmdmthtbemmdmh;hty It is found that there are six
essentially different forms which this may take. In the most interesting form stationary waves
appear on the ring. It is suggested that this might , for i , for the !
on Hydra and for whorled leaves. Amdmummﬂdnﬁmonmanphmaa]mm-
sidered. Such a system apy to for gastrul Another reaction system in two
dimensions gives rise to patterns reminiscent of dappling. Ilisahumggemd that stationary
waves in two di ions could for the ph of phyll

The purpose of this paper is to di a possibl hani Isywhnchtbegenuol‘lzmn
mydmmﬂleanabomdmmmoﬂhemﬁnngmg:m The theory does not make any
new hypotheses; it merely suggests that in well-k physical laws are sufficient to account
for many of the facts. The full understanding of the paper requires a good knowledge of mathe-
matics, some biology, and some elementary chemistry. Since readers cannot be expected to be
experts in all of these subj a ber of el v facts are explained, which can be found in
text-books, but whose omission would make the paper difficult reading.

1. A MODEL OF THE EMBRYO. MORPHOGENS

In this section a mathematical model of the growing embryo will be described. This model
will be a simplification and an idealization, and consequently a falsification. It is to be
hoped that the features retained for discussion are those of greatest importance in the
present state of knowledge.

The model takes two slightly different forms. In one of them the cell theory is recognized
but the cells are idealized into geometrical points. In the other the matter of the organism
is imagined as continuously distributed. The cells are not, however, completely ignored,
for various physical and physico-chemical characteristics of the matter as a whole are
assumed to have values appropriate to the cellular matter.

With either of the models one proceeds as with a physical theory and defines an entity
called ‘the state of the system’. One then describes how that state is to be determined from
the state at a moment very shortly before. With either model the description of the state
consists of two parts, the mechanical and the chemical. The mechanical part of the state
describes the positions, masses, velocities and elastic properties of the cells, and the forces
between them. In the continuous form of the theory essentially the same information is
given in the form of the stress, velocity, density and elasticity of the matter. The chemical
part of the state is given (in the cell form of theory) as the chemical composition of each
separate cell; the diffusibility of each substance between each two adjacent cells must also

Vor. 237, B. g1, (Price By.) 5 [Published 14 Augvst 1932
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développement d’une suite mathématique bien
connue, la suite dite de Fibonacci. C’est une suite
de nombres entiers tels que chaque nombre est la
somme des deux précédents. En numérotant les
points de chaque spirale mise a plat et en tragant
un trait entre les points selon un angle constant,
on retrouve, entre les nombres représentant les
points, le développement de la suite de Fibo-
nacci: 1, 1,2, 3,5, 8, etc. (voir la figure page 107).

De méme, les feuilles des plantes se développent
sur les tiges selon des angles formant une spirale
de pas constant pour une espéce donnée ; presque
toutes les spirales appartiennent a la suite de Fibo-
nacci. La suite de Fibonacci prédit donc I'angle de
répartition des feuilles sur les tiges ou des étamines
dans les fleurs sans que I'on comprenne le méca-
nisme sous-jacent. Turing espére éclaircir ce méca-
nisme en appliquant son modele de réaction-diffusion.

Larticle publié par Turing en 1952 sur son systéme
de réaction-diffusion qui sera nommé ensuite
astructure de Turing ».

En effet, la simple description géométrique du phé-
nomene ou son expression arithmétique ne don-
nent aucun résultat.

Turing travaille a cette question apres 1952, en
collaboration avec son collégue de Manchester C.
W. Wardlaw et son étudiant B. Richards, mais la
plupart de ses recherches restent a I'état d’ébauche.
Elles manifestent néanmoins le méme souci que
I’article publié en 1952 : voir dans quelle mesure, en
I’absence de solutions générales, il est possible de
trouver des solutions partielles grace au modéle de
réaction-diffusion, au prix d’hypothéses fortes
quant a la prédictibilité du phénomene étudié.

On comprend ainsi la place accordée a I"hypo-
these prédictive dans les travaux de Turing et, en
particulier, la parenté entre I"article de logique de 1936
et I'article de biologie de 1952 elle vient du fait
que, dans les deux cas, le déterminisme prédictif est
local, tandis que le comportement global du sys-
teme (machine de Turing ou systéme physique) est
non prédictif. Les deux perspectives different seule-
ment par la facon dont nous apparait cette distinc-
tion local/global : dans le cas de la machine de Turing,
ladifférence local/global s’exprime a travers un théo-
reme d’impossibilité logique traduit sous la forme
du probléme de I'arrét. Ce théoréme montre qu'’il
existe une classe de problémes qui ne peuvent étre
résolus par la machine universelle de Turing. En
revanche, dans le cas biologique, le caractére non pré-
dictif tient & la croissance trop rapide des fonctions
qui décrivent le systéme.

Ce point de vue théorique de Turing est des plus
subtils, car il rapproche deux objets — I"auto-orga-
nisation d’une forme et la machine de Turing — que
tout semble séparer a premiere vue, & commencer
par leur nature, L’ auto-organisation d’une forme pos-
séde, pres de I'équilibre, un caractére de nécessité,
tandis que la machine de Turing n’est qu’une notion,
dont I’aspect arbitraire n’est compensé que par sa
parenté avec d’autres notions remplissant la méme
fonction au regard de la calculabilité : le lambda-cal-
cul de Church (voir page 75) et les fonctions calcu-
lables de Gaodel (voir page 70).

La nature de la pensée

Pour quelles raisons Turing a-t-il développé un tel
point de vue ? Pourquoi a-t-il tenu & se maintenir
dans une posture duale a I’égard du déterminisme ?
Turing s’en explique dans le seul article philoso-
phique qu’il ait jamais écrit: Computing machi-
nery and intelligence. Cet article, paru en 1950
dans la revue philosophique Mind, porte sur la nature
de la pensée. Turing y superpose les deux phases
du déterminisme. Loin d’étre la défense et 1'illus-
tration du déterminisme prédictif dans la pensée,
comme ses premiers lecteurs I'ont cru, I'article
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articule au contraire avec beaucoup de subtilité deux
projets dont un laisse la part belle au non prédic-
tif: un projet « grand public » ou le déterminisme
prédictif semble étre revendiqué, et un projet plus
caché qui, tout en montrant les limites du premier,
donne de la pensée une tout autre idée, celle d’un
processus irréversible et non prédictif. La discré-
tion du second point de vue est due au fait que Turing
ne le revendique pas: il affiche un point de vue
déterministe sur la nature de la pensée, mais
convoque toutes les ressources figuratives de la
langue naturelle — jeux de mots, allusions littéraires,
souvenirs, proverbes — pour en faire surgir son
second point de vue. C’est ainsi, en quelque sorte,
1’histoire de son propre itinéraire intellectuel que
Turing raconte ici.

L article de 1950 se présente comme une expé-
rience de pensée dont le simple déroulement doit
convaincre le lecteur que I’intelligence est un concept
déterministe et prédictif; le lecteur en conclut
alors que l'intelligence s’applique aussi bien aux
humains qu’aux ordinateurs, si ces derniers sont
convenablement programmés. Et puisque le statut
déterministe et prédictif rend ce concept abstrait
applicable a des substrats divers (étre humain, ordi-
nateur), une science mécanique de I'intelligence
devient alors concevable.

- = - -

Le jeu de I'imitation

L article de Turing apparait comme un exercice rhé-
torique: il vise a emporter la conviction du lecteur
quant a la possibilité d’une science mécanique de
Iintelligence. Cet exercice rhétorique prend I’ aspect
d’un jeu impliquant une prise de décision. De ce point
de vue, il s’intégre parfaitement au questionnement
général sur le statut du prédictif cher a Turing
depuis son article de 1936. Cependant, contrairement
au cas formel ot la décision concernait le vrai et le
faux, le jeu porte sur la différence physique maxi-
male existant entre les étres humains, a savoir la
différence homme/femme.

Turing appelle le jeu qu'il imagine le «jeu de
I’imitation ». Celui-ci se divise en deux phases suc-
cessives. La premiére phase se joue entre un homme,
une femme et un interrogateur séparé physiquement
des deux autres joueurs. L'interrogateur pose des
questions a ’homme et a la femme par I’intermé-
diaire d'un dispositif relevant de I’écrit (télétype
ou imprimante, par exemple). Chacun doit essayer
de dissimuler son sexe a I'interrogateur en imitant
les réponses que donnerait I’adversaire. La deuxieme
phase débute quand, a I’insu de I'interrogateur, on
remplace I'homme par un ordinateur programmé
pour dissimuler & I’interrogateur « qui» il est: 1’or-
dinateur est programmé pour imiter les réponses que
donnerait I'homme (qui lui-méme imite les réponses
de la femme).

Devant I’échec de I'interrogateur a reconnaitre
le subterfuge aprés une durée de partie fixée a
I’avance, le lecteur doit conclure que la dissimula-
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Peut-on faire de l'intelligence un concept abstrait,
dissocié de tout substrat physique ? Telle est I'une
des questions qui occupe Turing a la fin de sa vie.

tion est efficace et que I'interrogateur ne parvien-
dra jamais a deviner le sexe des joueurs. En d’autres
termes, il doit se persuader que 1'ordinateur est
capable de remplacer |’ étre humain dans cette expé-
rience de discrimination de I’homme et de la femme
sans que sa présence soit décelable par un étre humain.
Convaincu de ce succes, le lecteur doit alors en
déduire que, dans le futur, toutes les tiches qui requie-
rent une intelligence et qui étaient jusqu’a présent
exécutées par un étre humain pourront étre rempla-
cées par des ordinateurs au fur et a mesure des pro-
grés de la programmation.

Le jeu vise donc deux buts: d’une part, a long
terme, prouver que la notion d’intelligence est
indépendante de tout substrat physique et qu’elle est
de ce fait susceptible d’étre incarnée dans les maté-
riaux les plus divers, y compris les ordinateurs ;
d’autre part, a court terme (méme s’il ne s’agit que
d’une expérience de pensée), montrer qu'un ordi-
nateur convenablement programmé est capable de
remplacer I'un des joueurs humains dans le jeu. Pour-
tant, en examinant le déroulement d’une partie, on
conclut que ces deux buts sont inaccessibles par le
biais du jeu lui-méme et qu’il y a donc autre chose
dans le jeu que la mise en place d’une science pos-
sible de I'intelligence.

Trois constatations conduisent a cette conclu-
sion. D’abord, dans le cas de la premiére phase du
jeu, Turing précise que la meilleure stratégie pour
la femme «est sans doute de dire la vérité ». Or deux
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Le jeu de ['imitation

et un interrogateur (C), qui peut étre de I'un ou

l'autre sexe. L'interrogateur demeure dans une

piéce différente de celle des deux autres joueurs.
Le butdu jeu, pour l'interrogateur, est de déterminer lequel des
deux est 'homme et lequel la femme. Il les connait sous les
appeliations X etY et a la fin de la partie, il doit dire soit: "X
estA etY estB " soit: “X estB etY estA ", Linterrogateur
a le droit de poser 4 A et B des questions telles que: X pour-
rait-il ou pourrait-elle, s'il vous plait, me dire la longueur de
ses cheveux? "
Supposons que X est vraiment A et qu'il lui faut donner une
réponse. Le but de A dans le jeu est d'induire C en erreur. Sa
réponse pourrait donc étre : “ Mes cheveux sont coupés a la
garconne et les méches les plus longues font a peu prés
20 centimétres. "
Pour faire en sorte que les tons de voix ne viennent pas en
aide a l'interrogateur, les réponses devraient étre écrites,
ou mieux encore, dactylographiées. La configuration idéale
serait de disposer d'une téléimprimante communiquant a tra-
vers deux piéces. On peut aussi concevoir que questions et
réponses soient répétées par un intermédiaire. Le but du
jeu pour le troisiéme joueur (B) est de venir en aide a I'in-
terrogateur. La meilleure stratégie pour celle-ci est sans doute
de donner des réponses vraies. Elle peut ajouter des remarques
d ses réponses comme “ je suis la femme, ne I'écoutez pas !”,
mais cela n‘aboutirait a rien, car I'homme peut faire des
remarques semblables.
Nous posons maintenant la question: * Que se passera-t-il si
I'on substitue une machine a A dans le jeu ? " L'interrogateur
se trompera-t-il autant de fois quand le jeu est joué de cette
maniére que lorsqu'il est joué entre un homme et une
femme ? Ces questions remplacent la question originelle, “ Les
machines peuvent-elles penser? ". »

Alan Turing, Computing machinery and intelligence, 1950

/ I se joue a trois, un homme (A), une femme (B)

points méritent d'étre soulignés a ce sujet: d une
part, cette stratégie a pour conséquence immédiate
I"élimination de la femme dans le jeu, puisque dire
toujours la vérité est une stratégie trop univoque pour
échapper longtemps a la perspicacité de I'interro-
gateur: d’autre part, attribuer une telle stratégie a
la femme n’a aucun caractére de nécessité, car elle
pourrait aussi bien échoir & ’homme. L'attribuer sys-
tématiquement a la femme a donc une autre fonc-
tion que celle d’étre la « meilleure stratégie ».

Cette fonction repose sur une analogie induite dans
le jeu entre la vérité-authenticité et la femme d’une
part, et le mensonge-dissimulation et I"homme d*autre
part. La question qu’une telle attitude souléve est alors
la suivante : sur quel fondement repose I'analogie tra-
cée par Turing entre la vérité et le mensonge d un cOté,
et la femme et I'homme de I'autre ? Force est de consta-
ter que cette analogie est illégitime et qu’elle laisse
penser que I"élimination de la femme a d’autres moti-
vations que celles explicitées dans le jeu.

La deuxiéme constatation a trait a la deuxiéme
phase du jeu: la conclusion qui doit étre atteinte
consiste a considérer que la notion d’intelligence est
indépendante de tout substrat physique. Or pour I'éta-
blir, il faut décider, 2 un moment donné, que |'in-
terrogateur ne parviendra jamais a faire la différence
entre I"homme et la femme et qu’il est donc temps
de remplacer I’homme par un ordinateur: ¢’est cette
décision qui permet de faire passer la partie de la
premiere a la seconde phase. Or ce moment de
décision ne peut pas étre déterminé temporelle-
ment parce qu’il est toujours possible que I'interro-
gateur pose la question qui lui révélera I'identité
sexuelle d'un joueur.

Passer a la seconde phase de la partie implique
donc d’étre déja convaincu de I'échec de I'interro-
gateur et du caractere indécidable du remplacement
de I’homme par |’ordinateur, avant méme le début

hitp:fweaew, sciwrite.callech adu/journal03Mura. html
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d’une partie. Les arguments qui ont conduit a cette
conviction ne dérivent donc pas du déroulement d’une
partie : il y a de toute évidence ici une pétition de prin-
cipe qui repose sur des motivations d’un tout autre
ordre que celles défendues ouvertement par Turing
dans I'article.

En résumé, le jeu tel qu’il est décrit conduit, lors
de sa premiére phase, & |I'élimination de la femme et,
lors de sa seconde, au préjugé de I'indépendance de
la notion d’intelligence @ 1’égard de tout substrat phy-
sique particulier.

Peut-on distinguer un
homme et un ordinateur?

La troisieme constatation concerne I’enchainement
des deux phases du jeu. Cet enchainement vise a sup-
primer la pertinence de tout substrat physique par-
ticulier eu égard a la notion d’intelligence : d’une
part entre les hommes et les femmes, d’autre part
entre les humains et les ordinateurs. Toutefois,
cette conclusion dépend d’un point de vue imagi-
naire dans lequel on ne peut jamais se placer en
réalité, car il exige a priori du lecteur a la fois de
reconnaitre la différence physique entre I"humain
et I'ordinateur et de ne pas reconnaitre cette diffé-
rence. En effet. pour que le jeu de I'imitation
puisse atteindre son but déclaré (séparer I'intelli-
gence de tout substrat physique), il faudrait que
chaque humain se place de lui-méme en position
d’interrogateur mis en échec, tout en étant capable
de faire physiquement la différence entre humain et
ordinateur (en tant qu’observateur du déroulement
du jeu).

En d’autres termes, 1'article de 1950 invite le
lecteur & considérer que la différence physique entre
humain et ordinateur est en méme temps non perti-
nente et pertinente, selon qu'il se place en imagina-
tion a I'intérieur de la construction du jeu ou a
I"extérieur: a I'intérieur du jeu, le lecteur s’identifie
a I'interrogateur mis en échec et ne voit donc plus la
différence entre humain et ordinateur; a I’extérieur,
la différence physique entre humain et ordinateur
existe (¢’est une donnée du jeu a laquelle le a accés
en tant qu’observateur extérieur).

C’est la possibilité de ce va et vient entre inté-
rieur et extérieur du jeu — autrement dit cet indéci-
dable quant a la différence physique entre humain et
ordinateur — qui n’est jamais explicitée par Turing.
En outre, rétroactivement, si cet indécidable ins-
taure une différence physique inassignable entre
étre humain et ordinateur, il doit le faire aussi entre
homme et femme de par la construction du jeu. La
différence sexuelle n’est donc pas abolie dans le
Jeu: elle y survit sous la forme d’un indécidable.

Le déroulement du jeu, dans la mesure o il fait
intervenir de fagon dissimulée un indécidable quant
a la nature physique des joueurs, impose une double
conclusion. D'une part, du point de vue du projet
scientifique que le jeu est censé soutenir, on doit
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Argument de [ continuité du systeme nerveux

Le systéme nerveux n'est siirement pas une machine a états discrets.
Une petite erreur concernant la taille de I'influx nerveux entrant dans un
neurone peut avoir une grande conséquence sur la taille de I'influx qui en
sort. On pourrait arguer, cela étant, que I'on ne peut pas imiter le com-
portement du systéme nerveux avec un systéme a états discrets. Il est
vrai qu'une machine a états discrets doit étre différente d'une machine
continue. Mais si nous acceptons les condictions du jeu de I'imitation, I'in-
terrogateur ne pourra pas tirer avantage de cette différence.

Alan Turin, Computing machinery and intelligence, 1950

conclure que les manifestations de I'intelligence
humaine ne relévent pas toutes du déterminisme
prédictif: un étre humain (I’interrogateur) ne peut
décider si les réponses qu’il obtient proviennent
d’un homme, d’une femme ou d’une machine. D autre
part, il est possible de préciser ce sur quoi porte I'in-
décidable qui intervient dans le jeu: il s’agit de la
différence physique maximale entre deux étres par-
lants, ¢’est-a-dire de la différence sexuelle telle qu’elle
est décelable a partir de leur comportement verbal
rédigé sous forme écrite.

Le projet d’une science mécanique de I'intelligence
bute donc sur la facon dont est interprétée la diffé-
rence sexuelle dans le cadre du jeu. Un tel projet pré-
suppose qu'un surcroit de programmation pourra
toujours venir a bout de la différence sexuelle repré-
sentée verbalement; or la présence d’un indécidable
dans le jeu montre au contraire que les interactions entre
les humains laissent toujours une trace physique par
I’intermédiaire de leur comportement verbal. Cest
donc ['attitude a I’égard du verbal qui conditionne
I’'une ou I'autre branche de I"alternative.

La part du diable

Turing a le projet déclaré, dans I'article de 1950,
de montrer que le cheminement qui a été le sien pour
en venir a penser la possibilité d’une science
mécanique de I'intelligence peut étre exécuté par
tout lecteur. Le jeu de |'imitation est donc censé étre
le moyen qui permet au lecteur de I'article d’opé-
rer un raccourci temporel. Il parviendrait alors,
des qu’il aurait compris le fonctionnement du jeu,
au point ou est arrivé Turing, sans avoir besoin de
suivre son cheminement.

Cependant, 2 moins de supposer que la réalisation
d’une science mécanique de I'intelligence ait été
prévisible de toute éternité, il faut bien admettre que
son apparition a un moment donné est contingente.
Dés lors, Turing se sent contraint, pour convaincre
son lecteur, de faire intervenir dans son article I"«
ingrédient » qui justifie cette apparition, son récit per-
sonnel. Ce récit personnel est contenu dans les
objections au projet d’une science mécanique de I'in-
telligence, objections que Turing expose, puis aux-
quelles il répond en mélant de facon dissimulée des
souvenirs personnels a ses réflexions.
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Alan Turing dans les années 1940.

Ces réponses dépassent le cadre du style d’écri-
ture scientifique et rendent accessible une tout autre
dimension du rapport au verbal, faite de récits et
de métaphores. Par leur aspect figuratif, elles dévoi-
lent, dans la constitution de sa pensée, une contin-
gence inaccessible a la programmation. Les
ressources de la langue naturelle nous permettent
alors de saisir les événements constitutifs qui ont
participé a |’organisation personnelle de la pensée
de Turing et qui dessinent son histoire indivi-
duelle, en particulier cette facon de méler I'inven-
tion de I’ordinateur & sa verbalisation du rapport
qu’il entretient avec la différence sexuelle. Dés lors,
I"invention de I’ordinateur devient plus le résultat
du parcours culturel d’un individu au sein d’une
société que |'apparition, dans un agenda scienti-
fique, d’un outil abstrait que I’on n”aurait pas besoin
de s’approprier culturellement.

Sans prendre en considération tous les exemples,
il est possible d’en donner deux qui éclaircissent la
question. A la fin de la liste d’objections que
Turing présente contre la thése de la possibilité d'une
science mécanique de I'intelligence, Turing use d'un
argument au premier abord tout a fait étrange, «[ar-
gument de la perception extra-sensorielle»: I'es-

prit ne peut pas étre mécanisé car on ne peut pas
mécaniser la perception extra-sensorielle. Que vient
faire un argument pareil dans un texte épistémolo-
gique ? D"aucuns ont invoqué le caractére ironique
de I'argument dans un texte rempli... de perceptions
extra-sensorielles. D’autres y voient une image dont
on peut tirer un véritable projet scientifique en termes
d’interfaces cerveaux-machines. Ce sont des lec-
tures possibles. Apres tout, Turing ne semble pas
hermétique a 1'idée de télépathie: dans un article
de 1953 ot il raconte comment des vieilles dames
de la Sociéré pour la recherche psychigue ont cher-
ché a influencer un ordinateur qui jouait au jeu de
Nim, il conclut que «les machines sont beaucoup
moins coopératives que les étre humains en matiére
d’influence télépathique » (voir page 45).

On pourrait s’en tenir la. Mais on peut aussi
remarquer que la carriére scientifique de Turing a
eu une expérience « télépathique » pour déclencheur.
Lors de ses années de lycée passées a I'internat de
la Sherborne Grammar School, Turing eut un amour
platonique envers 1'un de ses camarades, Christo-
pher Morcom, et leur terrain d’entente commun
fut la science. Christopher Morcom, brillant €leve
promis & un grand avenir scientifique, fut recu a
I’examen d’entrée & Cambridge alors que Turing
échoua et dut attendre un an pour le repasser. Entre-
temps, Christopher Morcom mourut d une tuber-
culose bovine. Turing se sentit alors investi d’une
mission : assumer le destin scientifique de son ami
disparu. Il écrivit un texte intitulé Nature de I'Es-
pritqu’il envoya a la mére de son camarade décédé.
Dans ce texte, il décrit le mécanisme qui retient I'es-
prit au corps jusqu’a la mort et la facon dont I'es-
prit détaché du corps «trouve tot ou tard un autre
corps, peut-étre immédiatement », Il se demande
alors pourquoi les étres humains ont des corps qui
les empéchent de «vivre libres comme des esprits
et de communiquer comme tels ». Ainsi, le déces de
son camarade a probablement influencé la maniere
dont Turing a posé les questions qui ont jalonné son
parcours intellectuel.

L'« apprentissage
des machines »

Quelques pages plus loin, Turing s'interroge sur la
fagon dont les machines peuvent apprendre. Le theme
de I'« apprentissage des machines » aura un réle
crucial par la suite dans ce qu’il est convenu d’ap-
peler aujourd’hui « I'intelligence artificielle » et cer-
tains voient donc dans les remarques de Turing I’acte
de naissance d’un théme scientifique promis a un
grand avenir. On peut aussi étre sensible a la facon
dont Turing présente le theme en question. Il sou-
léve tout d’abord une question d’ordre technique:
quel type d’ingénierie doit servir a la construction
des ordinateurs pour qu'ils soient susceptibles de
participer au jeu de I'imitation ? On s’attend a ce
qu’il réponde a la question en mathématicien ou en
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ingénieur, mais il fait tout d’abord une étrange
remarque qui semble, elle aussi, relever de I'ironie
pure et simple:

On pourrait par exemple insister sur le fait que
I’équipe d’'ingénieurs devrait étre toute du méme
sexe, mais ce ne serait pas vraiment satisfaisant, car
il est sans doute possible de construire un individu
complet a partir d’une seule cellule, disons de la
peau d'un homme.

L’ironie vient du fait que la remarque vise a sup-
primer la possibilité d une tricherie de la part de
I’équipe d’ingénieurs, tricherie qui consisterait a
faire passer pour une création artificielle une
«machine » qui aurait été en fait obtenue par une
fécondation et une gestation naturelles. En for-
mant une équipe d’ingénieurs du méme sexe, on
supprime la différence sexuelle, ce qui va dans le
sens du projet du jeu de I'imitation. Toutefois, on
laisse le soin & la peau de jouer le role d’une créa-
tion par parthénogenése. Ce faisant, on construit
une machine qui a les attributs de I'homme : I'homme
en tant qu’opposé a la femme reste fantomatique-
ment présent.

On trouve dans I'article de 1950 de nombreuses
autres allusions cachées a la vie de Turing : ces allusions
permettent d’interpréter tout autrement le projet d’une
science mécanique de I'esprit en I'intégrant & un par-
cours individuel dont le propre est d’étre globalement
imprévisible et dont la langue naturelle permet, par ses
ressources propres, de reconstituer les étapes marquantes.
Remarquons cependant que le jeu de I'imitation n’a pas
seulement pour fonction de reconstituer les étapes du
passé individuel de Turing : il préfigure & bien des égards
la fin tragique qui sera celle de Turing quatre ans aprés

Wikimedia Commons

la rédaction de I"article. Une statue de Turing, une pomme a la main,
érigée en 2001 a Manchester, dans le Sackville Park.
it H Ci-dessous, une plaque commémorative posée

Le suicide de Turing plageead por
sur la derniére demeure de Turing,
Turing était homosexuel et ne s’en cachait pas, au a Wilmslow, en 2004.

moins dans le cercle libéral de Cambridge, méme

si laréserve était de mise ailleurs. En décembre 1951,  chez lui en ingérant une pomme ayant macéré dans
il rencontre dans les rues de Manchester un jeune du cyanure. selon le schéma de I’empoisonnement
homosexuel, Arnold Murray, avec qui il a une de Blanche-Neige dans le dessin animé de Walt Dis-
aventure. Peu aprés, un vol d’argent estcommis chez  ney qui I’avait tant marqué avant-guerre.

Turing par un tiers qui a eu vent par Murray de la Revenons un instant au jeu de I'imitation. Sa pro-
disposition des lieux. Turing, naivement, blématique est basée sur le fait de savoir s’il
déclare le vol a la police qui reconstitue /\ est possible de considérer la notion d’in-
assez vite toute |"histoire. Murray et telligence indépendamment de tout sub-
Turing sont condamnés pour I}onlo- I" A\LAN TURING strat ph_ysique. La! fép(msc. «publique »
sexualité en mars 1952. On laisse a 1912-1954 de Turing est positive, mais nous avons
Turing, fellow de la Royal Society. le i Tt vu qu'elle nécessite de refouler dans
. 5 . ¥ L \ and cryptographer, whose work A oolw . .
choix entre la prison et un traitement |\ ORI I'indécidable certaines conditions du

hormonal censé prévenir son homo- wi::-icn;:f;i;m::i"' jeu. Ces conditions, qui ont a voir avec
sexualité. Turing, pour des raisons liées 1 la nature physique des joueurs, sont celles
a son travail & Manchester qu’il ne veut qui rattrapent définitivement Turing le 7 juin
pas abandonner, décide de subir le traite- 1954 : son traitement hormonal a fait de lui
ment hormonal consistant en des injections d’hor- un homme qui ne peut plus décider s’il est un homme
mones femelles censées faire baisser sa libido. Le ou une femme. 1l est dés lors difficile de ne pas voir
traitement lui est administré d’avril 1952 a avril 1953;  dans les conditions du jeu de I'imitation non seule-
il devient temporairement impuissant et ses seins ment le récit d"une histoire individuelle, mais la pré-
se mettent pousser. Le 7 juin 1954, Turing se suicide figuration de sa fin tragique.
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trange destin que celui de I'ceuvre de Turing (1912-
1954): jaugée a I'aune de la conception et de la réa-
lisation des premiers ordinateurs, elle fut longtemps
occultée sur ce terrain par la figure massive de von
Neumann. Ce n’est qu’a la faveur du travail d’histo-
rien mené a bien par Andrew Hodges au début des
années 1980 que la connaissance de son ccuvre
quitta le cercle étroit des spécialistes et réoccupa la
place capitale qui lui est due dans 1’histoire de la
notion de calcul, dans celle des machines a calculer
et, plus généralement, dans notre société informa-
tique. Mais cette reconnaissance posthume, tout
d’abord suscitée par I’engouement pour I'« intelli-
gence artificielle » qui se voulait étre, depuis les années
1960, 1I'héritiere et la continuatrice de son ceuvre, a
également nuit & son intelligibilité : en s’appropriant
la figure de Turing pour le camper en pere fonda-
teur, elle occulta les parties de ses travaux qui n’avaient
pas directement a voir avec la construction des pre-
miers ordinateurs ni avec les modeles informatiques
des fonctions cognitives.

Turing ou I'expérience

Lorsque Turing congoit sa machine, explique certaines formes du
vivant ou définit la notion d’intelligence, une seule question le guide:
quel est le périmétre de calculabilité du domaine considéré ?
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des limites

L' ceuvre de Turing est en effet beaucoup plus
diverse que ce que I'on en retient généralement.
Elle est aussi beaucoup plus romanesque : écrivains
et hommes de théitre ne s’y sont pas trompés, eux
qui ont reconnu tres vite tout le parti qu’ils pou-
vaient tirer d’un itinéraire de vie aussi extraordinaire,
tant du point de vue intellectuel que du point de vue
des actions collectives auxquelles il participa.
Qu’on en juge plutot. Son parcours intellectuel a
quelque chose d’un météore : en a peine 20 ans (son
premier article date de 1935, son dernier de 1954),
Turing obtient des résultats novateurs ou méme révo-
lutionnaires dans des domaines aussi divers que les
mathématiques (calcul des probabilités, théorie des
nombres, théorie des groupes), la logique (décidabi-
lité, calculabilité), la construction des premiers
ordinateurs ou la morphogenése biologique.

Plus encore, dans I'urgence absolue de la lutte
contre le nazisme, a un des moments les plus dra-
matiques de la Seconde Guerre mondiale ot la Grande-
Bretagne, isolée par un blocus sans précédent, résiste
encore, Turing se distingue 4 nouveau : au départ
quasi seul, il décode les messages cryptés envoyés
de Berlin via Paris occupé aux sous-marins de la

La vie de Turing inspira nombre d’écrivains

et hommes de thédtre. Ci-contre, les affiches de
spectacles mis en scéne par Jean-Francois Peyret :
« Turing Machine » en 1999 a la MC93 de Bobigny
et « Histoire naturelle de I'esprit (suite et fin) »

en 2000 au Palais de Chaillot a Paris.
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Alan Turing (a gauche) se rendant en 1946
a une rencontre sportive avec d'autres membres
du Walton Athletic Club, un club amateur d'athlétisme
situé a Walton, dans le Surrey. Page ci-contre, I'ENIAC,
un des premiers ordinateurs réalisés a partir
du concept de machine universelle de Turing.

Kriegsmarine patrouillant dans 1" Atlantique a la
recherche des convois de ravitaillement alliés a
couler. Il est, de ce point de vue, I'une des grandes
figures de I'ombre du second conflit mondial et a
puissamment contribué a préserver la Grande-Bre-
tagne d’une invasion nazie. Enfin, sa condamnation
pour homosexualité, qui a trés certainement contri-
bué a son suicide a 1'dge de 42 ans, en 1954, nous
parait, avec le recul, non seulement dénuée de jus-
tice mais quasi incompréhensible.

I1'y adonc bien matiére a récit dans cette vie énig-
matique et emblématique de notre civilisation tech-
nologique ot le « numérique » prend une place sans
cesse croissante. Cependant, une premiére constata-
tion s’impose : dans cette énumération rapide des
résultats de Turing, il n’est nulle part question d’« intel-
ligence artificielle », pas plus que de modélisation
informatique des fonctions cognitives. Sa réputa-
tion serait-elle donc usurpée ? Pas du tout. Mais elle
ne se situe pas seulement la olt on la cantonne
quand on privilégie ses contributions a la théorie de
la calculabilité ou & la construction des premiers ordi-
nateurs sans prendre en considération la totalité de
I’itinéraire complexe de Turing. Quelle clé faut-il
alors employer pour en décrypter la cohérence ?

La question qui a occupé Turing toute sa vie
concerne le périmeétre de la calculabilité, c’est-a-
dire ce qui, dans tel ou tel domaine, est susceptible
ou non de recevoir une détermination numérique, au
sens traditionnel de rapport entre nombres. On pour-
rait arguer que cette question ne définit pas de fagon
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1.
,+Copy of first rough draft of Ee’cis of "Computable Numbers'

made for'Comptes Hendues'.

On peut appeler 'computahle' les nombres dont les déciisales se
laissent écrire par une machine . Une telle machine a un ruban qui
la E‘avarse,dans un certain sens l'analogue du papier . Le ruban se
divise en sections qu'on appelle 'carrds' . Chague carré peut porter
un symhole, mais ce n'est pas nfcessaire. Les carréds qui ne
porten(iaucun symbole s'appellent 'carrés vides'. La machine est
susceptible de plusieurs m- configurations , q .eceuuas. q ; clest
% dire les leviers, les roues et caetera peuvent s'arranggr en
pluskenrs mani®res, appelées'm-configurations'., A chaque moment
un seul carrd se montre dans la machine. Ce carré s 'appelle ' le
carrd vu', le carrd la-dessus s'appelle 'le symbole vu', ' Le
symbole vu' et la m-configuration ensemble,s'appellent 'l*un—
figuration' tout simple. La configuration détermine le mouvement
prochain de la machine qui peut marcher & gauche ou 3 droite, ou
&crire un symbole nouveau sur 'le carré vu'!, s'il est vide, ou
effacer'la symbole vu' . Ensuite elle peut changer la m-configura-
tion .

Les symboles dcrits par la machine renferment les chiffres
du nombre qu'elle compute et d'autres symboles., La machine ne doit
jamais effacer un chiffre,

Une veritable 'machine i computer' doit écrire autant de
chiffres que l'on veut. On appelle ainsi 'méchante! une machine M
8'il y a un nombre N ,tel que M n'derit jamais N chiffres. Une suits

de chiffres computée par une machine 'non-m&chante' s'appelle "suite

computable '. Un nombre dont l'expression décimale est une‘suite

computahle’ s 'appelle ‘nombre computable .

suffisamment précise ses recherches personnelles
puisque tout mathématicien se trouve confronté aelle:
et en effet, déterminer numériquement un certain
nombre de rapports réglés semble caractériser 1'en-
treprise mathématique en général. En revanche, Turing
est original dans la facon dont il répond a cette ques-
tion, car sa réponse caractérise le style de détermina-
tion mathématique qu’il cherche a promouvoir.

L'attitude de Turing consiste a tracer une limite
entre le calculable et le non calculable et, d’un
méme mouvement, a étendre aussi loin que possible
le domaine du calculable en repoussant cette limite.
Ce point de vue explique les hésitations qu’un lecteur
de Turing peut avoir, tiraillé entre les deux facettes
de sa démarche. Il devient alors tentant de privilé-
gier un aspect de son ceuvre plutdt qu’un autre,
selon que 1'on cherche a ranger celle-ci sous une
banniére ou une autre, comme la théorie de I'exten-
sion indéfinie du domaine du calculable, de loin la
plus répandue. Toutefois, il faut se garder de cette lec-
ture unilatérale parce que |'extension maximale du
domaine du calculable n'a de sens que si elle est
rapportée a la détermination préalable d’une fron-
tiere entre calculable et non calculable.

Certes, celte frontiére est mouvante : dans un
systeme formel, le domaine de ce qui est accessible
au calcul dépend de I'ingéniosité des mathématiciens
a trouver les caractéristiques calculatoires de telle
ou telle procédure. Néanmoins, elle existe bel et
bien a priori, comme Turing I’a démontré. Il existe
donc un processus de pensée, de nature énigma-
tique. sur lequel Turing s’interrogera toute sa vie, un
processus qui dépasse la limite entre calculable et non
calculable puisqu’il permet de la déterminer. Com-
prendre «1’expérience des limites » de Turing fait toute
la difficulté et la richesse de son ceuvre. Cette atti-
tude n’est pas partagée par toute lacommunauté mathé-
matique. D autres styles de pensée la cdtoient, dont
certains ne privilégient en rien la dimension calcula-
toire de la détermination mathématique.

La limite du calculable

Trois exemples éclairent la démarche de Turing. Ces
trois exemples correspondent a ses trois articles fon-
damentaux, écrits respectivement en 1936, 1950 et
1952. IIs représentent les trois étapes fondamentales
de son itinéraire intellectuel.

Dans le premier, intitulé On computable numbers,
with an application to the Entscheidungsproblem,

Le compte-rendu que Turing écrivit en 1935 pour
I'Académie des sciences avec I'aide de sa mére,
premiére version de son fameux article de 1936

(en haut). Ce compte-rendu passa inapercu. Ci-contre,
I'ordinateur Deep Blue, qui affronta Kasparov aux
échecs en 1996. Le champion gagna la premiére
manche en un coup et perdit la seconde. Lintelligence
de I'ordinateur et celle de 'homme seraient-elles
indiscernables lorsqu'il s'agit de jouer aux échecs,
comme dans le jeu de l'imitation de Turing?
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Turing, dgé de 24 ans, fonde la théorie de la calcula-
bilité en démontrant plusieurs résultats capitaux liés
a la représentation formelle des nombres. A I'aide
d’un méme concept mathématique, la «machine de
Turing », il fixe une limite entre calculable et non cal-
culable (et définit du méme coup la calculabilité) tout
en déplagant continuellement cette limite en faveur
du calculable.

Nous avons vu que sa premiére étape. la déter-
mination d une limite au domaine du calculable, passe
par un raisonnement par I’absurde : Turing montre le
caractere contradictoire d une machine a calculer du
type « machine de Turing » qui pourrait résoudre
une certaine classe de probléemes en s’en tenant au
domaine de I'explicitement calculable. Une fois cette
contradiction atteinte, ¢’est-a-dire une fois explici-
tement exhibée la frontiére entre calculable et non cal-
culable sur une classe de problémes servant de
contre-exemple, Turing montre, dans une seconde
étape, que I’on peut postuler que le concept de
«machine de Turing » effectue néanmoins n’im-
porte quelle tache, pourvu que celle-ci soit réduc-
tible & un calcul: a charge aux mathématiciens d’ opérer
cette réduction sur des problemes précis. Cette
approche est particuliére parce qu’elle ne se contente
pas de solliciter I’esprit du lecteur en vue qu’il com-
prenne un nouveau concept ou une nouvelle démons-
tration. Elle le place dans une disposition d’esprit telle
qu’il cherche a étendre le domaine du calculable.
Cette éthique du calculable est le fond de la démarche
de Turing en 1936 et ne le quittera jamais.

Lorsque l'ordinateur et
I'homme sont indiscernables

Le deuxiéme exemple est lié au seul article que Turing
écrivit pour une revue de philosophie. Dans ce texte

VoL. Lix. No. 236.] [October, 1950

MIND

A QUARTERLY REVIEW
oF

PSYCHOLOGY AND PHILOSOPHY

I.—COMPUTING MACHINERY AND
INTELLIGENCE

By A.M.Turivg

1. The Imitation Game.

1 prOPOSE to consider the question, ‘Can machines think '
This should begin with definitions of the meauing of the terms
‘ machine ’ and ‘ think *. The definitions might be framed 20 as to
reflect 8o far as possible the normal use of the words, but this
attitude is dangerous. If the meaning of the words ‘ machine
and * think ’ are to be found by examining how they are commonly
used it is difficult to escape the conclusion that the meaning
and the answer to the question, ‘ Can machines think ? * is to be
sought in a statistical survey sich as a Gallup poll. But this is
sbsurd. [Instead of attempting such a definition I shall replace the
question by another, which is closely related to it and is expressed
in relatively unambiguous words.

The new form of the problem can be described in terms of
& game which we call the ‘ imitation game . It is played with
three people, & man (A), a woman (B), and an interrogator (C) who
may be of either sex. The interrogator stays in a room sapart
from the other two. The object of the game for the interrogator
i8 to determine which of the other two is the man and which is
‘the woman. He knows them by labels X and Y, and at the end
of the game he says either ‘ X is Aand Yis B'or ‘X is Band Y
is A’. The interrogator is allowed to put questions to A and B
thus :

C: Will X please tell me the length of his or her hair {
Now suppose X is actually A, then A must answer. It is A’s

28 433
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TURING

L'article Computing machinery and intelligence publié
par Turing en 1950 dans la revue Mind (ci-dessus).
Le périmétre de calculabilité défini par Turing
ressemble a «l'univers-ballon » des cosmologistes
(ci-dessous), modéle qui représente I'expansion
uniforme de I'Univers (chaque point a la surface

du ballon représente une galaxie).

Comme les cosmologistes, Turing délimite

un domaine, puis I'étend au maximum.

de 1950, intitulé Computing machinery and intelli-
gence, Turing s’interroge sur la nature du concept
d’intelligence et se demande dans quelle mesure ce
concept est ou non transférable a des machines.
Pour répondre a ces questions, il propose un jeu de
son invention, qu’il appelle le «jeu de I'imitation »
etqui vise a montrer expérimentalement —si tant est
qu’une expérience de pensée soit assimilable & une
expérience —qu’il est possible de dissocier le concept
d’intelligence du substrat physique particulier propre
aux étres humains. Les régles du jeu mettent en lumiére
une situation dans laquelle un étre humain ne peut
pas distinguer une tache exécutée par un ordinateur
(et donc par définition réductible a un calcul) de la
méme tiche exécutée par un étre humain, alors que
ce dernier est censé étre discernable d’un ordina-
teur (son intelligence est censée ne pas se réduire a
un calcul).

Ainsi, en isolant le concept d’intelligence de tout
support physique particulier, le jeu permet d’assimi-
ler intelligence humaine et intelligence « mécanique » :
siI'intelligence humaine ne se distingue pas des formes
d’intelligence ayant un tout autre support matériel,
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Les motifs pigmentaires qui décorent les coquilles de gastéropodes et de mollusques bivalves

(en bas a gauche) sont des « structures de Turing ». Ce sont des enregistrements d'un processus dynamique
se déroulant sur le bord de la coquille @ mesure qu'elle croit. Aujourd'hui, des modéles et

des simulations sur ordinateur reconstituent les processus de formation de ces motifs.

mathématiquement les équations de propagation de
substances chimiques idéales et lacompétition entre la
réaction et la diffusion de ces substances s opérant a
vitesse variable. Le résultat le plus remarquable est
I'apparition, dans certaines conditions transitoires,
d’ondes stationnaires, appelées aujourd’hui «struc-
tures de Turing » : ce phénomene d’auto-organisation
du milieu rend compte de I"apparition de certaines
formes naturelles dans le processus de développement,
comme les tiches et les rayures sur la peau de certains
mammiféres ou de certains coquillages.

Turing semble effectuer ici un virage complet
dans ses recherches, car rien ne parait rapprocher ce
théme de ses travaux antérieurs. C’est d"ailleurs pour-
quoi toute la fin de sa carriere intellectuelle est géné-
ralement sous-estimée ou passée sous silence. Pourtant,
si 'on examine ce dernier axe de recherche en gar-
danten téte le projet fondamental de Turing — la déter-
mination du périmetre de la calculabilité selon les deux
étapes décrites précédemment —, on s’apercoit qu'il
n’est pas aussi éloigné des précédents qu’il en a I"air:
Turing cherche a montrer que la matiére elle-méme
passe par ces deux étapes. Le raisonnement de nature
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si énigmatique qui parvient a réunir les deux faces de
lanotion de calcul, calculable et non calculable, a donc
une contrepartie physique. Dans les deux premiers
articles, la constitution d'une limite entre calculable
et non calculable était acquise quand on exhibait un
probléme particulier qui n’était pas soluble au moyen
du concept de machine de Turing. Dorénavant, ce n’est
pas un cas particulier, mais la nature toute entiére qui
est non calculable : le non calculable est la régle plu-
ot que I'exception dans le domaine de la matiére
physique. L'exception réside dans I"apparition des
formes individuées au sein du vivant: il est possible
de calculer, au moins idéalement, les processus de
différenciation qui aboutissent & cette apparition. L'ex-
tension du domaine du calculable passe donc par [’ éfude
de la production des formes dans la nature.

Ainsi. les trois étapes de I'itinéraire intellectuel
de Turing dessinent un parcours tout a fait original :
héritier de la science classique déterministe, Turing
a poussé aussi loin que possible le périmetre de sa
validité. Cependant, il a aussi rompu avec ce para-
digme et contribué i en engendrer un nouveau, celui
de la science contemporaine : le notre. =3

H. Meinhardt
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